2 research outputs found

    Colloidal electrophoresis: Scaling analysis, Green-Kubo relation, and numerical results

    Full text link
    We consider electrophoresis of a single charged colloidal particle in a finite box with periodic boundary conditions, where added counterions and salt ions ensure charge neutrality. A systematic rescaling of the electrokinetic equations allows us to identify a minimum set of suitable dimensionless parameters, which, within this theoretical framework, determine the reduced electrophoretic mobility. It turns out that the salt-free case can, on the Mean Field level, be described in terms of just three parameters. A fourth parameter, which had previously been identified on the basis of straightforward dimensional analysis, can only be important beyond Mean Field. More complicated behavior is expected to arise when further ionic species are added. However, for a certain parameter regime, we can demonstrate that the salt-free case can be mapped onto a corresponding system containing additional salt. The Green-Kubo formula for the electrophoretic mobility is derived, and its usefulness demonstrated by simulation data. Finally, we report on finite-element solutions of the electrokinetic equations, using the commercial software package COMSOL.Comment: To appear in Journal of Physics: Condensed Matter - special issue on occasion of the CODEF 2008 conferenc

    Electrophoretic mobility of a charged colloidal particle: A computer simulation study

    Full text link
    We study the mobility of a charged colloidal particle in a constant homogeneous electric field by means of computer simulations. The simulation method combines a lattice Boltzmann scheme for the fluid with standard Langevin dynamics for the colloidal particle, which is built up from a net of bonded particles forming the surface of the colloid. The coupling between the two subsystems is introduced via friction forces. In addition explicit counterions, also coupled to the fluid, are present. We observe a non-monotonous dependence of the electrophoretic mobility on the bare colloidal charge. At low surface charge density we observe a linear increase of the mobility with bare charge, whereas at higher charges, where more than half of the ions are co-moving with the colloid, the mobility decreases with increasing bare charge.Comment: 15 pages, 8 figure
    corecore