79 research outputs found

    Iatrogenic FDG foci in the lungs: a pitfall of PET image interpretation

    Full text link
    2-[F-18]-fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) has become an important staging modality for many tumors, including bronchial carcinoma; however it is important to know that there are several pitfalls in PET image interpretation. In this report we demonstrate three cases in which focal intrapulmonary FDG uptake could possibly represent iatrogenic microembolism. These FDG accumulations would have been interpreted as malignant tumor mass in the lung if no anatomic correlation would have been performed. For this reason, we further present an integrated PET/CT scanner, which recently has been introduced. This correlation of molecular and morphological information enables the specification of the FDG-PET finding

    Imaging of Pulmonary Infection

    Get PDF
    The spectrum of organisms known to cause respiratory infections is broad and constantly increasing as new pathogens are identified, and an increasing number of patients have impaired immunity due to disease or medications. The radiographic manifestations of a given organism may be variable depending on the immunologic status of the patient and the presence of pre- or coexisting lung disease. Moreover, the clinical data and radiographic findings often fail to lead to a definitive diagnosis of pneumonia because there are an extensive number of noninfectious processes associated with febrile pneumonitis. This chapter describes and illustrates the characteristic imaging manifestations of the most common community- acquired pneumonias, nosocomial pneumonias, and the various infections seen in both immunocompetent and immunocompromised patients

    Impact of different image reconstructions on PET quantification in non-small cell lung cancer: a comparison of adenocarcinoma and squamous cell carcinoma

    Full text link
    OBJECTIVE: Positron emission tomography (PET) using 18F-fluordeoxyglucose (F-FDG) is an established imaging modality for tumor staging in patients with non-small cell lung cancer (NSCLC). There is a growing interest in using F-FDG PET for therapy response assessment in NSCLC which relies on quantitative PET parameters such as standardized uptake values (SUV). Different reconstruction algorithms in PET may affect SUV. We sought to determine the variation of SUV in patients with NSCLC when using ordered subset expectation maximization (OSEM) and block sequential regularized expectation maximization (BSREM) in latest-generation digital PET/CT, including a subanalysis for adenocarcinoma and squamous cell carcinoma. METHODS: A total of 58 patients (34 = adenocarcinoma, 24 = squamous cell carcinoma) that underwent a clinically indicated F-FDG PET/CT for staging were reviewed. PET images were reconstructed with OSEM and BSREM reconstruction with noise penalty strength β-levels of 350, 450, 600, 800 and 1200. Lung tumors maximum standardized uptake value (SUV) were compared. RESULTS: Lung tumors SUV were significantly lower in adenocarcinomas compared to squamous cell carcinomas in all reconstructions evaluated (all p 0.05). There was a statistically significant difference of the relative increase of SUV in adenocarcinoma (mean + 34.8%) and squamous cell carcinoma (mean 23.4%), when using BSREM instead of OSEM (p < 0.05). CONCLUSIONS: In NSCLC the relative change of SUV when using BSREM instead of OSEM is significantly higher in adenocarcinoma as compared to squamous cell carcinoma. ADVANCES IN KNOWLEDGE: The impact of BSREM on SUV may vary in different histological subtypes of NSCLC. This highlights the importance for careful standardisation of β-value used for serial F-FDG PET scans when following-up NSCLC patients

    PET/MR outperforms PET/CT in suspected occult tumors

    Full text link
    BACKGROUND To compare the diagnostic accuracy of PET/MR and PET/CT in patients with suspected occult primary tumors. METHODS This prospective study was approved by the institutional review board. Sequential PET/CT-MR was performed in 43 patients (22 male subjects; median age, 58 years; range, 20-86 years) referred for suspected occult primary tumors. Patients were assessed with PET/CT and PET/MR for the presence of a primary tumor, lymph node metastases, and distant metastases. Wilcoxon signed-rank test was performed to compare the diagnostic accuracy of PET/CT and PET/MR. RESULT According to the standard of reference, a primary lesion was found in 14 patients. In 16 patients, the primary lesion remained occult. In the remaining 13 patients, lesions proved to be benign. PET/MR was superior to PET/CT for primary tumor detection (sensitivity/specificity, 0.85/0.97 vs 0.69/0.73; P = 0.020) and comparable to PET/CT for the detection of lymph node metastases (sensitivity/specificity, 0.93/1.00 vs 0.93/0.93; P = 0.157) and distant metastases (sensitivity/specificity, 1.00/0.97 vs 0.82/1.00; P = 0.564). PET/CT tended to misclassify physiologic FDG uptake as malignancy compared with PET/MR (8 patients vs 1 patient). CONCLUSIONS PET/MR outperforms PET/CT in the workup of suspected occult malignancies. PET/MR may replace PET/CT to improve clinical workflow

    PET/MR imaging of bone lesions - implications for PET quantification from imperfect attenuation correction

    Full text link
    PURPOSE: Accurate attenuation correction (AC) is essential for quantitative analysis of PET tracer distribution. In MR, the lack of cortical bone signal makes bone segmentation difficult and may require implementation of special sequences. The purpose of this study was to evaluate the need for accurate bone segmentation in MR-based AC for whole-body PET/MR imaging. METHODS: In 22 patients undergoing sequential PET/CT and 3-T MR imaging, modified CT AC maps were produced by replacing pixels with values of >100 HU, representing mostly bone structures, by pixels with a constant value of 36 HU corresponding to soft tissue, thereby simulating current MR-derived AC maps. A total of 141 FDG-positive osseous lesions and 50 soft-tissue lesions adjacent to bones were evaluated. The mean standardized uptake value (SUVmean) was measured in each lesion in PET images reconstructed once using the standard AC maps and once using the modified AC maps. Subsequently, the errors in lesion tracer uptake for the modified PET images were calculated using the standard PET image as a reference. RESULTS: Substitution of bone by soft tissue values in AC maps resulted in an underestimation of tracer uptake in osseous and soft tissue lesions adjacent to bones of 11.2 ± 5.4 % (range 1.5-30.8 %) and 3.2 ± 1.7 % (range 0.2-4 %), respectively. Analysis of the spine and pelvic osseous lesions revealed a substantial dependence of the error on lesion composition. For predominantly sclerotic spine lesions, the mean underestimation was 15.9 ± 3.4 % (range 9.9-23.5 %) and for osteolytic spine lesions, 7.2 ± 1.7 % (range 4.9-9.3 %), respectively. CONCLUSION: CT data simulating treating bone as soft tissue as is currently done in MR maps for PET AC leads to a substantial underestimation of tracer uptake in bone lesions and depends on lesion composition, the largest error being seen in sclerotic lesions. Therefore, depiction of cortical bone and other calcified areas in MR AC maps is necessary for accurate quantification of tracer uptake values in PET/MR imaging

    Protocol requirements and diagnostic value of PET/MR imaging for liver metastasis detection

    Full text link
    PURPOSE: To compare the accuracy of PET/MR imaging with that of FDG PET/CT and to determine the MR sequences necessary for the detection of liver metastasis using a trimodality PET/CT/MR set-up. METHODS: Included in this single-centre IRB-approved study were 55 patients (22 women, age 61 ± 11 years) with suspected liver metastases from gastrointestinal cancer. Imaging using a trimodality PET/CT/MR set-up (time-of-flight PET/CT and 3-T whole-body MR imager) comprised PET, low-dose CT, contrast-enhanced (CE) CT of the abdomen, and MR with T1-W/T2-W, diffusion-weighted (DWI), and dynamic CE imaging. Two readers evaluated the following image sets for liver metastasis: PET/CT (set A), PET/CECT (B), PET/MR including T1-W/T2-W (C), T1-W/T2-W with either DWI (D) or CE imaging (E), and a combination (F). The accuracy of each image set was determined by receiver-operating characteristic analysis using image set B as the standard of reference. RESULTS: Of 120 liver lesions in 21/55 patients (38 %), 79 (66 %) were considered malignant, and 63/79 (80 %) showed abnormal FDG uptake. Accuracies were 0.937 (95 % CI 89.5 - 97.9 %) for image set A, 1.00 (95 % CI 99.9 - 100.0 %) for set C, 0.998 (95 % CI 99.4 - 100.0 %) for set D, 0.997 (95 % CI 99.3 - 100.0 %) for set E, and 0.995 (95 % CI 99.0 - 100.0 %) for set F. Differences were significant for image sets D - F (P < 0.05) when including lesions without abnormal FDG uptake. As shown by follow-up imaging after 50 - 177 days, the use of image sets D and both sets E and F led to the detection of metastases in one and three patients, respectively, and further metastases in the contralateral lobe in two patients negative on PET/CECT (P = 0.06). CONCLUSION: PET/MR imaging with T1-W/T2-W sequences results in similar diagnostic accuracy for the detection of liver metastases to PET/CECT. To significantly improve the characterization of liver lesions, we recommend the use of dynamic CE imaging sequences. PET/MR imaging has a diagnostic impact on clinical decision making

    Clinical molecular anatomic imaging: PET, PET/CT, and Spect/CT

    No full text

    Maximising the benefit of integrated PET/CT: the road ahead

    Full text link

    Integrated modality imaging with PET-CT and SPECT-CT: CT issues

    No full text
    • …
    corecore