59 research outputs found

    insights on the right ventricle. A cardiovascular magnetic resonance study

    Get PDF
    OBJECTIVES Pectus excavatum (PE) is often regarded as a cosmetic disease, while its effect on cardiac function is under debate. Data regarding cardiac function before and after surgical correction of PE are limited. We aimed to assess the impact of surgical correction of PE on cardiac function by cardiovascular magnetic resonance (CMR). METHODS CMR at 1.5 T was performed in 38 patients (mean age 21 ± 8.3; 31 men) before and after surgical correction to evaluate thoracic morphology, indices and its relation to three-dimensional left and right ventricular cardiac function. RESULTS Surgery was successful in all patients as shown by the Haller Index ratio of maximum transverse diameter of the chest wall and minimum sternovertebral distance [pre: 9.64 (95% CI 8.18–11.11) vs post: 3.0 (2.84–3.16), P < 0.0001]. Right ventricular ejection fraction (RVEF) was reduced before surgery and improved significantly at the 1-year follow-up [pre: 45.7% (43.9–47.4%) vs 48.3% (46.9–49.5%), P = 0.0004]. Left ventricular ejection fraction was normal before surgery, but showed a further improvement after 1 year [pre: 61.0% (59.3–62.7%) vs 62.7% (61.3–64.2%), P = 0.0165]. Cardiac compression and the asymmetry index changed directly after surgery and were stable at the 1-year follow-up [3.93 (3.53–4.33) vs 2.08 (1.98–2.19) and 2.36 (2.12–2.59) vs 1.38 (1.33–1.44), respectively; P < 0.0001 for both]. None of the obtained thoracic indices were predictors of the improvement of cardiac function. A reduced preoperative RVEF was predictive of RVEF improvement. CONCLUSIONS PE is associated with reduced RVEF, which improves after surgical correction. CMR has the capability of offering additional information prior to surgical correction

    Effects of heart valve prostheses on phase contrast flow measurements in Cardiovascular Magnetic Resonance - a phantom study

    Get PDF
    Background: Cardiovascular Magnetic Resonance is often used to evaluate patients after heart valve replacement. This study systematically analyses the influence of heart valve prostheses on phase contrast measurements in a phantom trial. Methods: Two biological and one mechanical aortic valve prostheses were integrated in a flow phantom. B-0 maps and phase contrast measurements were acquired at a 1.5 T MR scanner using conventional gradient-echo sequences in predefined distances to the prostheses. Results were compared to measurements with a synthetic metal-free aortic valve. Results: The flow results at the level of the prosthesis differed significantly from the reference flow acquired before the level of the prosthesis. The maximum flow miscalculation was 154 ml/s for one of the biological prostheses and 140 ml/s for the mechanical prosthesis. Measurements with the synthetic aortic valve did not show significant deviations. Flow values measured approximately 20 mm distal to the level of the prosthesis agreed with the reference flow for all tested all prostheses. Conclusions: The tested heart valve prostheses lead to a significant deviation of the measured flow rates compared to a reference. A distance of 20 mm was effective in our setting to avoid this influence

    Assessment of mitral bioprostheses using cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The orifice area of mitral bioprostheses provides important information regarding their hemodynamic performance. It is usually calculated by transthoracic echocardiography (TTE), however, accurate and reproducible determination may be challenging. Cardiovascular magnetic resonance (CMR) has been proven as an accurate alternative for assessing aortic bioprostheses. However, whether CMR can be similarly applied for bioprostheses in the mitral position, particularly in the presence of frequently coincident arrhythmias, is unclear. The aim of the study is to test the feasibility of CMR to evaluate the orifice area of mitral bioprostheses.</p> <p>Methods</p> <p>CMR planimetry was performed in 18 consecutive patients with mitral bioprostheses (n = 13 Hancock<sup>®</sup>, n = 4 Labcore<sup>®</sup>, n = 1 Perimount<sup>®</sup>; mean time since implantation 4.5 ± 3.9 years) in an imaging plane perpendicular to the transprosthetic flow using steady-state free-precession cine imaging under breath-hold conditions on a 1.5T MR system. CMR results were compared with pressure half-time derived orifice areas obtained by TTE.</p> <p>Results</p> <p>Six subjects were in sinus rhythm, 11 in atrial fibrillation, and 1 exhibited frequent ventricular extrasystoles. CMR image quality was rated as good in 10, moderate in 6, and significantly impaired in 2 subjects. In one prosthetic type (Perimount<sup>®</sup>), strong stent artifacts occurred. Orifice areas by CMR (mean 2.1 ± 0.3 cm<sup>2</sup>) and TTE (mean 2.1 ± 0.3 cm<sup>2</sup>) correlated significantly (r = 0.94; p < 0.001). Bland-Altman analysis showed a 95% confidence interval from -0.16 to 0.28 cm<sup>2 </sup>(mean difference 0.06 ± 0.11 cm<sup>2</sup>; range -0.1 to 0.3 cm<sup>2</sup>). Intra- and inter-observer variabilities of CMR planimetry were 4.5 ± 2.9% and 7.9 ± 5.2%.</p> <p>Conclusions</p> <p>The assessment of mitral bioprostheses using CMR is feasible even in those with arrhythmias, providing orifice areas with close agreement to echocardiography and low observer dependency. Larger samples with a greater variety of prosthetic types and more cases of prosthetic dysfunction are required to confirm these preliminary results.</p

    Acoustic cardiac triggering: a practical solution for synchronization and gating of cardiovascular magnetic resonance at 7 Tesla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To demonstrate the applicability of acoustic cardiac triggering (ACT) for imaging of the heart at ultrahigh magnetic fields (7.0 T) by comparing phonocardiogram, conventional vector electrocardiogram (ECG) and traditional pulse oximetry (POX) triggered 2D CINE acquisitions together with (i) a qualitative image quality analysis, (ii) an assessment of the left ventricular function parameter and (iii) an examination of trigger reliability and trigger detection variance derived from the signal waveforms.</p> <p>Results</p> <p>ECG was susceptible to severe distortions at 7.0 T. POX and ACT provided waveforms free of interferences from electromagnetic fields or from magneto-hydrodynamic effects. Frequent R-wave mis-registration occurred in ECG-triggered acquisitions with a failure rate of up to 30% resulting in cardiac motion induced artifacts. ACT and POX triggering produced images free of cardiac motion artefacts. ECG showed a severe jitter in the R-wave detection. POX also showed a trigger jitter of approximately Δt = 72 ms which is equivalent to two cardiac phases. ACT showed a jitter of approximately Δt = 5 ms only. ECG waveforms revealed a standard deviation for the cardiac trigger offset larger than that observed for ACT or POX waveforms.</p> <p>Image quality assessment showed that ACT substantially improved image quality as compared to ECG (image quality score at end-diastole: ECG = 1.7 ± 0.5, ACT = 2.4 ± 0.5, p = 0.04) while the comparison between ECG vs. POX gated acquisitions showed no significant differences in image quality (image quality score: ECG = 1.7 ± 0.5, POX = 2.0 ± 0.5, p = 0.34).</p> <p>Conclusions</p> <p>The applicability of acoustic triggering for cardiac CINE imaging at 7.0 T was demonstrated. ACT's trigger reliability and fidelity are superior to that of ECG and POX. ACT promises to be beneficial for cardiovascular magnetic resonance at ultra-high field strengths including 7.0 T.</p
    corecore