50 research outputs found

    Improving the performance of spray operators through monitoring and evaluation of insecticide concentrationsof pirimiphos-methyl during indoor residual spraying for malaria control on Bioko Island

    Get PDF
    Background: Quality control of indoor residual spraying (IRS) is necessary to ensure that spray operators (SOs) deposit the correct concentration of insecticide on sprayed structures, while also confrming that spray records are not being falsifed. Methods: Using high-performance liquid chromatography (HPLC), this study conducted quality control of the organophosphate insecticide pirimiphos-methyl (Actellic 300CS), during the 2018 IRS round on Bioko Island, Equatorial Guinea. Approximately 60 SOs sprayed a total of 67,721 structures in 16,653 houses during the round. Houses that were reportedly sprayed were randomly selected for quality control testing. The SOs were monitored twice in 2018, an initial screening in March followed by sharing of results with the IRS management team and identifcation of SOs to be re-trained, and a second screening in June to monitor the efectiveness of training. Insecticide samples were adhesive-lifted from wooden and cement structures and analysed using HPLC. Results: The study suggests that with adequate quality control measures and refresher training, suboptimal spraying was curtailed, with a signifcant increased concentration delivered to the bedroom (diference=0.36, P<0.001) and wooden surfaces (diference 0.41, P=0.001). Additionally, an increase in efective coverage by SOs was observed, improving from 80.7% in March to 94.7% in June after re-training (McNemar’s test; P=0.03). Conclusions: The ability to randomly select, locate, and test houses reportedly sprayed within a week via HPLC has led to improvements in the performance of SOs on Bioko Island, enabling the project to better evaluate its own performance. Keywords: Malaria, Indoor residual spraying, Vector control, Quality control, Bioko Islan

    Increased Biting Rate of Insecticide-Resistant Culex Mosquitoes and Community Adherence to IRS for Malaria Control in Urban Malabo, Bioko Island, Equatorial Guinea.

    Get PDF
    Sustaining high levels of indoor residual spraying (IRS) coverage (≥85%) for community protection against malaria remains a challenge for IRS campaigns. We examined biting rates and insecticide resistance in Culex species and Anopheles gambiae s.l., and their potential effect on community adherence to IRS. The average IRS coverage in urban Malabo between 2015 and 2017 remained at 80%. Culex biting rate increased 6.0-fold (P < 0.001) between 2014 and 2017, reaching 8.08 bites per person per night, whereas that of An. gambiae s.l. remained steady at around 0.68. Although An. gambiae s.l. was susceptible to carbamates and organophosphates insecticides, Culex spp. were phenotypically resistant to all four main classes of WHO-recommended IRS insecticides. Similarly, the residual activity of the organophosphate insecticide used since 2017, ACTELLIC 300CS, was 8 mo for An. gambiae s.l., but was almost absent against Culex for 2 mo post-spray. A survey conducted in 2018 within urban Malabo indicated that 77.0% of respondents related IRS as means of protection against mosquito bites, but only 3.2% knew that only Anopheles mosquitoes transmit malaria. Therefore, the increasing biting rates of culicines in urban Malabo, and their resistance to all IRS insecticides, is raising concern that a growing number of people may refuse to participate in IRS as result of its perceived failure in controlling mosquitoes. Although this is not yet the case on Bioko Island, communication strategies need refining to sensitize communities about the effectiveness of IRS in controlling malaria vectors in the midst of insecticide resistance in nonmalaria vector mosquitoes

    Spatial Associations Between Land Use and Infectious Disease: Zika Virus in Colombia

    No full text
    Land use boundaries represent human&ndash;physical interfaces where risk of vector-borne disease transmission is elevated. Land development practices, coupled with rural and urban land fragmentation, increases the likelihood that immunologically na&iuml;ve humans will encounter infectious vectors at land use interfaces. This research consolidated land use classes from the GLC-SHARE dataset; calculated landscape metrics in linear (edge) density, proportion abundance, and patch density; and derived the incidence rate ratios of the Zika virus occurrence in Colombia, South America during 2016. Negative binomial regression was used to evaluate vector-borne disease occurrence counts in relation to Population Density, Average Elevation, Per Capita Gross Domestic Product, and each of three landscape metrics. Each kilometer of border length per square kilometer of area increase in the linear density of the Cropland and Grassland classes is associated with an increase in Zika virus risk. These spatial associations inform a risk reduction approach to rural and urban morphology and land development that emphasizes simple and compact land use geometry that decreases habitat availability for mosquito vectors of Zika virus

    Optimization of tissue sampling for Borrelia burgdorferi in white-footed mice (Peromyscus leucopus).

    No full text
    Peromyscus leucopus (the white-footed mouse) is a known reservoir of the Lyme disease spirochete Borrelia burgdorferi. Sampling of white-footed mice allows for year-round B. burgdorferi surveillance as well as opportunities to establish the diversity of the different variants in a geographic region. This study explores the prevalence of B. burgdorferi infections in the tissues of white-footed mice, investigates the correlations between B. burgdorferi infected tissues, and determines the optimum field methods for surveillance of B. burgdorferi in P. leucopus. A total of 90 mice and 573 tissues (spleen, liver, ear, tongue, tail, heart, and kidney) were screened via nested PCR for B. burgdorferi infections. A large number of infections were found in the 90 mice as well as multiple infections within individual mice. Infections in a single mouse tissue (spleen, liver, ear, tongue and tail) were predictive of concurrent infection in other tissues of the same mouse at a statistically significant level. Ear tissue accounted for 68.4% of detected infections, which increased to 78.9% of the infected mice with the inclusion of tail samples. The use of ear punch or tail snip samples (used individually or in tandem) have multiple advantages over current Lyme disease ecological studies and surveillance methodologies, including lower associated costs, minimization of delays, year-round B. burgdorferi testing opportunities, as well as longitudinal monitoring of B. burgdorferi in defined geographic regions. In the absence of an effective vaccine, personal prevention measures are currently the most effective way to reduce Lyme disease transmission to humans. Thus, the identification and monitoring of environmental reservoirs to inform at-risk populations remains a priority. The sampling methods proposed in this study provide a reasonable estimate of B. burgdorferi in white-footed mice in a timely and cost-effective manner
    corecore