25 research outputs found

    First-line high-dose therapy and autologous blood stem cell transplantation in patients with primary central nervous system non-Hodgkin lymphomas-a single-centre experience in 61 patients

    Full text link
    Primary central nervous system non-Hodgkin lymphomas (PCNS-NHLs) are extranodal B-cell lymphomas with poor prognosis. The role of high-dose therapy (HDT) followed by autologous blood stem cell transplantation (ASCT) as first-line therapy is still not clear. We retrospectively collected long-term follow up data of 61 consecutive patients with PCNS-NHL at the University Hospital Düsseldorf from January 2004 to December 2016. Thirty-six patients were treated with conventional chemoimmunotherapy (cCIT) only (CT-group). Seventeen patients received an induction cCIT followed by HDT and ASCT. In the CT-group, the overall response rate (ORR) was 61% (CR 47%, PR 14%), and there were 8% treatment-related deaths (TRD). Progression-free survival (PFS) was 31.8 months, and overall survival (OS) was 57.3 months. In the HDT-group, the ORR was 88% (59% CR, 29% PR), and there were 6% TRD. Median PFS and OS were not reached at 5 years. The 5-year PFS and OS were 64.7%. After a median follow up of 71 months, 10 patients (59%) were still alive in CR/PR following HDT and ASCT, one patient was treated for progressive disease (PD), and 7 had died (41%, 6 PD, 1 TRD). All patients achieving CR prior to HDT achieved durable CR. In the CT-group, 8 patients (22%) were alive in CR/PR after a median follow-up of 100 months. Twenty-eight patients died (78%, 24 PD, 2 TRD, 2 deaths in remission). In the univariate analysis, the HDT-group patients had significantly better PFS (not reached vs 31.8 months, p = 0.004) and OS (not reached vs 57.3 months, p = 0.021). The multivariate analysis showed HDT was not predictive for survival. Treatment with HDT + ASCT is feasible and offers the chance for long-term survival with low treatment-related mortality in younger patients. In this analysis, ORR, PFS and OS were better with HDT than with conventional cCIT alone. This result was not confirmed in the multivariate analysis, and further studies need to be done to examine the role of HDT in PCNSL

    Report on the nature and types of driver interactions including their potential future

    Get PDF
    The Baltic Sea is a dynamic environment responding to various drivers operating at different temporal and spatial scales. In response to climate change, the Baltic Sea is warming and the frequency of extreme climatic events is increasing (Lima & Wethey 2012, BACC 2008, Poloczanska et al. 2007). Coastal development, human population growth and globalization intensify stressors associated with human activities, such as nutrient loading, fisheries and proliferation of invasive and bloom-forming species. Such abrupt changes have unforeseen consequences for the biodiversity and the function of food webs and may result in loss of ecological key species, alteration and fragmentation of habitats. To mitigate undesired effects on the Baltic ecosystem, an efficient marine management will depend on the understanding of historical and current drivers, i.e. physical and chemical environmental conditions and human activities that precipitate pressures on the natural environment. This task examined a set of key interactions of selected natural and anthropogenic drivers in space and time, identified in Task 3.1 as well as WP1 and WP2 (e.g. physico-chemical features vs climate forcing; eutrophication vs oxygen deficiency vs bio-invasions; fisheries vs climate change impacts) by using overlay-mapping and sensitivity analyses. The benthic ecosystem models developed under Task 2.1 were used to investigate interactions between sea temperature and eutrophication for various depth strata in coastal (P9) and offshore areas (P1) of the Baltic Sea. This also included investigation on how the frequency and magnitude of deep-water inflow events determines volume and variance of salinity and temperature under the halocline, deep-water oxygen levels and sediment fluxes of nutrients, using observations and model results from 1850 to present (P1, P2, P6, P9, P12). The resulting synthesis on the nature and magnitude of different driver interactions will feed into all other tasks of this WP3 and WP2/WP4. Moreover, the results presented in this report improve the process-based and mechanistic understanding of environmental change in the Baltic Sea ecosystem, thereby fostering the implementation of the Marine Strategy Framework Directive

    Die Bauwirtschaft sowie die Bauunternehmung und ihr Potential fuer wirtschaftsdeliktisches Verhalten

    No full text
    Bibliothek Weltwirtschaft Kiel A 163962 / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman
    corecore