84 research outputs found
Informational laws of genome structures
In recent years, the analysis of genomes by means of strings of length k occurring in the genomes, called k-mers, has provided important insights into the basic mechanisms and design principles of genome structures. In the present study, we focus on the proper choice of the value of k for applying information theoretic concepts that express intrinsic aspects of genomes. The value k\u2009=\u2009lg2(n), where n is the genome length, is determined to be the best choice in the definition of some genomic informational indexes that are studied and computed for seventy genomes. These indexes, which are based on information entropies and on suitable comparisons with random genomes, suggest five informational laws, to which all of the considered genomes obey. Moreover, an informational genome complexity measure is proposed, which is a generalized logistic map that balances entropic and anti-entropic components of genomes and is related to their evolutionary dynamics. Finally, applications to computational synthetic biology are briefly outlined
A word recurrence based algorithm to extract genomic dictionaries
Genomes may be analyzed from an information viewpoint as very long strings,
containing functional elements of variable length, which have been assembled by
evolution. In this work an innovative information theory based algorithm is
proposed, to extract significant (relatively small) dictionaries of genomic
words. Namely, conceptual analyses are here combined with empirical studies, to
open up a methodology for the extraction of variable length dictionaries from
genomic sequences, based on the information content of some factors. Its
application to human chromosomes highlights an original inter-chromosomal
similarity in terms of factor distributions
GRAPES-DD: exploiting decision diagrams for index-driven search in biological graph databases
BACKGROUND: Graphs are mathematical structures widely used for expressing relationships among elements when representing biomedical and biological information. On top of these representations, several analyses are performed. A common task is the search of one substructure within one graph, called target. The problem is referred to as one-to-one subgraph search, and it is known to be NP-complete. Heuristics and indexing techniques can be applied to facilitate the search. Indexing techniques are also exploited in the context of searching in a collection of target graphs, referred to as one-to-many subgraph problem. Filter-and-verification methods that use indexing approaches provide a fast pruning of target graphs or parts of them that do not contain the query. The expensive verification phase is then performed only on the subset of promising targets. Indexing strategies extract graph features at a sufficient granularity level for performing a powerful filtering step. Features are memorized in data structures allowing an efficient access. Indexing size, querying time and filtering power are key points for the development of efficient subgraph searching solutions.RESULTS: An existing approach, GRAPES, has been shown to have good performance in terms of speed-up for both one-to-one and one-to-many cases. However, it suffers in the size of the built index. For this reason, we propose GRAPES-DD, a modified version of GRAPES in which the indexing structure has been replaced with a Decision Diagram. Decision Diagrams are a broad class of data structures widely used to encode and manipulate functions efficiently. Experiments on biomedical structures and synthetic graphs have confirmed our expectation showing that GRAPES-DD has substantially reduced the memory utilization compared to GRAPES without worsening the searching time.CONCLUSION: The use of Decision Diagrams for searching in biochemical and biological graphs is completely new and potentially promising thanks to their ability to encode compactly sets by exploiting their structure and regularity, and to manipulate entire sets of elements at once, instead of exploring each single element explicitly. Search strategies based on Decision Diagram makes the indexing for biochemical graphs, and not only, more affordable allowing us to potentially deal with huge and ever growing collections of biochemical and biological structures
A subgraph isomorphism algorithm and its application to biochemical data
BackgroundGraphs can represent biological networks at the molecular, protein, or species level. An important query is to find all matches of a pattern graph to a target graph. Accomplishing this is inherently difficult (NP-complete) and the efficiency of heuristic algorithms for the problem may depend upon the input graphs. The common aim of existing algorithms is to eliminate unsuccessful mappings as early as and as inexpensively as possible.ResultsWe propose a new subgraph isomorphism algorithm which applies a search strategy to significantly reduce the search space without using any complex pruning rules or domain reduction procedures. We compare our method with the most recent and efficient subgraph isomorphism algorithms (VFlib, LAD, and our C++ implementation of FocusSearch which was originally distributed in Modula2) on synthetic, molecules, and interaction networks data. We show a significant reduction in the running time of our approach compared with these other excellent methods and show that our algorithm scales well as memory demands increase.ConclusionsSubgraph isomorphism algorithms are intensively used by biochemical tools. Our analysis gives a comprehensive comparison of different software approaches to subgraph isomorphism highlighting their weaknesses and strengths. This will help researchers make a rational choice among methods depending on their application. We also distribute an open-source package including our system and our own C++ implementation of FocusSearch together with all the used datasets (http://ferrolab.dmi.unict.it/ri.html). In future work, our findings may be extended to approximate subgraph isomorphism algorithms
Comprehensive reconstruction and visualization of non-coding regulatory networks in human
Research attention has been powered to understand the functional roles of non-coding RNAs (ncRNAs). Many studies have demonstrated their deregulation in cancer and other human disorders. ncRNAs are also present in extracellular human body fluids such as serum and plasma, giving them a great potential as non-invasive biomarkers. However, non-coding RNAs have been relatively recently discovered and a comprehensive database including all of them is still missing. Reconstructing and visualizing the network of ncRNAs interactions are important steps to understand their regulatory mechanism in complex systems. This work presents ncRNA-DB, a NoSQL database that integrates ncRNAs data interactions from a large number of well established online repositories. The interactions involve RNA, DNA, proteins and diseases. ncRNA-DB is available at http://ncrnadb.scienze.univr.it/ncrnadb/. It is equipped with three interfaces: web based, command line and a Cytoscape app called ncINetView. By accessing only one resource, users can search for ncRNAs and their interactions, build a network annotated with all known ncRNAs and associated diseases, and use all visual and mining features available in Cytoscape
A subgraph isomorphism algorithm and its application to biochemical data
BackgroundGraphs can represent biological networks at the molecular, protein, or species level. An important query is to find all matches of a pattern graph to a target graph. Accomplishing this is inherently difficult (NP-complete) and the efficiency of heuristic algorithms for the problem may depend upon the input graphs. The common aim of existing algorithms is to eliminate unsuccessful mappings as early as and as inexpensively as possible.ResultsWe propose a new subgraph isomorphism algorithm which applies a search strategy to significantly reduce the search space without using any complex pruning rules or domain reduction procedures. We compare our method with the most recent and efficient subgraph isomorphism algorithms (VFlib, LAD, and our C++ implementation of FocusSearch which was originally distributed in Modula2) on synthetic, molecules, and interaction networks data. We show a significant reduction in the running time of our approach compared with these other excellent methods and show that our algorithm scales well as memory demands increase.ConclusionsSubgraph isomorphism algorithms are intensively used by biochemical tools. Our analysis gives a comprehensive comparison of different software approaches to subgraph isomorphism highlighting their weaknesses and strengths. This will help researchers make a rational choice among methods depending on their application. We also distribute an open-source package including our system and our own C++ implementation of FocusSearch together with all the used datasets (http://ferrolab.dmi.unict.it/ri.html). In future work, our findings may be extended to approximate subgraph isomorphism algorithms
Covid19/IT the digital side of Covid19: A picture from Italy with clustering and taxonomy
The Covid19 pandemic has significantly impacted on our lives, triggering a strong reaction resulting in vaccines, more effective diagnoses and therapies, policies to contain the pandemic outbreak, to name but a few. A significant contribution to their success comes from the computer science and information technology communities, both in support to other disciplines and as the primary driver of solutions for, e.g., diagnostics, social distancing, and contact tracing. In this work, we surveyed the Italian computer science and engineering community initiatives against the Covid19 pandemic. The 128 responses thus collected document the response of such a community during the first pandemic wave in Italy (February-May 2020), through several initiatives carried out by both single researchers and research groups able to promptly react to Covid19, even remotely. The data obtained by the survey are here reported, discussed and further investigated by Natural Language Processing techniques, to generate semantic clusters based on embedding representations of the surveyed activity descriptions. The resulting clusters have been then used to extend an existing Covid19 taxonomy with the classification of related research activities in computer science and information technology areas, summarizing this work contribution through a reproducible survey-to-taxonomy methodology
APPAGATO: an APproximate PArallel and stochastic GrAph querying TOol for biological networks
Motivation: Biological network querying is a problem requiring a considerable computational effort tobe solved. Given a target and a query network, it aims to find occurrences of the query in the target byconsidering topological and node similarities (i.e. mismatches between nodes, edges, or node labels).Querying tools that deal with similarities are crucial in biological network analysis since they providemeaningful results also in case of noisy data. In addition, since the size of available networks increasessteadily, existing algorithms and tools are becoming unsuitable. This is rising new challenges for the designof more efficient and accurate solutions.Results: This paper presents APPAGATO, a stochastic and parallel algorithm to find approximateoccurrences of a query network in biological networks. APPAGATO handles node, edge, and node labelmismatches. Thanks to its randomic and parallel nature, it applies to large networks and, compared toexisting tools, it provides higher performance as well as statistically significant more accurate results.Tests have been performed on protein-protein interaction networks annotated with synthetic and real geneontology terms. Case studies have been done by querying protein complexes among different species andtissue
- …