4 research outputs found

    Observation of the TeV gamma-ray source MGRO J1908+06 with ARGO-YBJ

    Get PDF
    The extended gamma ray source MGRO J1908+06, discovered by the Milagro air shower detector in 2007, has been observed for about 4 years by the ARGO-YBJ experiment at TeV energies, with a statistical significance of 6.2 standard deviations. The peak of the signal is found at a position consistent with the pulsar PSR J1907+0602. Parametrizing the source shape with a two-dimensional Gauss function we estimate an extension \sigma = 0.49 \pm 0.22 degrees, consistent with a previous measurement by the Cherenkov Array H.E.S.S.. The observed energy spectrum is dN/dE = 6.1 \pm 1.4 \times 10^-13 (E/4 TeV)^{-2.54 \pm 0.36} photons cm^-2 s^-1 TeV^-1, in the energy range 1-20 TeV. The measured gamma ray flux is consistent with the results of the Milagro detector, but is 2-3 times larger than the flux previously derived by H.E.S.S. at energies of a few TeV. The continuity of the Milagro and ARGO-YBJ observations and the stable excess rate observed by ARGO-YBJ along 4 years of data taking support the identification of MGRO J1908+06 as the steady powerful TeV pulsar wind nebula of PSR J1907+0602, with an integrated luminosity above 1 TeV about 1.8 times the Crab Nebula luminosity.Comment: 6 pages, accepted for pubblication by ApJ. Replaced to correct the author lis

    Long-term Monitoring on Mrk 501 for Its VHE gamma Emission and a Flare in October 2011

    Get PDF
    As one of the brightest active blazars in both X-ray and very high energy Îł\gamma-ray bands, Mrk 501 is very useful for physics associated with jets from AGNs. The ARGO-YBJ experiment is monitoring it for Îł\gamma-rays above 0.3 TeV since November 2007. Starting from October 2011 the largest flare since 2005 is observed, which lasts to about April 2012. In this paper, a detailed analysis is reported. During the brightest Îł\gamma-rays flaring episodes from October 17 to November 22, 2011, an excess of the event rate over 6 σ\sigma is detected by ARGO-YBJ in the direction of Mrk 501, corresponding to an increase of the Îł\gamma-ray flux above 1 TeV by a factor of 6.6±\pm2.2 from its steady emission. In particular, the Îł\gamma-ray flux above 8 TeV is detected with a significance better than 4 σ\sigma. Based on time-dependent synchrotron self-Compton (SSC) processes, the broad-band energy spectrum is interpreted as the emission from an electron energy distribution parameterized with a single power-law function with an exponential cutoff at its high energy end. The average spectral energy distribution for the steady emission is well described by this simple one-zone SSC model. However, the detection of Îł\gamma-rays above 8 TeV during the flare challenges this model due to the hardness of the spectra. Correlations between X-rays and Îł\gamma-rays are also investigated.Comment: have been accepted for publication at Ap

    OBSERVATION OF TeV GAMMA RAYS FROM THE UNIDENTIFIED SOURCE HESS J1841−055 WITH THE ARGO-YBJ EXPERIMENT

    No full text
    We report the observation of a very high energy Îł -ray source whose position is coincident with HESS J1841−055. This source has been observed for 4.5 years by the ARGO-YBJ experiment from 2007 November to 2012 July. Its emission is detected with a statistical significance of 5.3 standard deviations. Parameterizing the source shape with a two-dimensional Gaussian function, we estimate an extension σ = (0.40+0.32 −0.22)◩, which is consistent with the HESS measurement. The observed energy spectrum is dN/dE = (9.0 ± 1.6) × 10−13(E/5 TeV)−2.32±0.23 photons cm−2 s−1 TeV−1, in the energy range 0.9–50 TeV. The integral Îł -ray flux above 1 TeV is 1.3 ± 0.4 Crab, which is 3.2 ± 1.0 times the flux derived by HESS. The differences in the flux determination between HESS and ARGO-YBJ and possible counterparts at other wavelengths are discussed

    Gammapy: Python toolbox for gamma-ray astronomy

    No full text
    Gammapy analyzes gamma-ray data and creates sky images, spectra and lightcurves, from event lists and instrument response information; it can also determine the position, morphology and spectra of gamma-ray sources. It is used to analyze data from H.E.S.S., Fermi-LAT, and the Cherenkov Telescope Array (CTA)
    corecore