46 research outputs found
Molecular dynamics simulations of peptides from BPTI:A closer look at amide-aromatic interactions
Molecular dynamics (MD) simulations of short peptides in water were performed to establish whether it is possible to reproduce experimental data from chemical shift measurements by nuclear magnetic resonance spectroscopy. Three different tetrapeptides were studied. The first, YTGP (Tyr-Thr-Gly-Pro), shows an electrostatic interaction between the aromatic ring of Tyr and the backbone amide hydrogen atom of Gly. The second, YTAP (Tyr-Thr-Ala-Pro), cannot make such an interaction because of steric hindrance of the Ala side chain and hence does not show a well-defined conformation. The third, FTGP (Phe-Thr-Gly-Pro), is shown to alternate between two different conformations. It is demonstrated that small differences in chemical shift, corresponding to these slightly different conformations, can be quantitatively modeled in MD simulations when using the proper force-field parameters and water model. Explicit inclusion of hydrogen atoms on the aromatic rings is essential for a proper description of electrostatic interactions, but the choice of the water model is equally important. We found that a combination of the SPC/E water model and a revised GROMOS87 force field gives close agreement with experiment, while the same and other force fields in combination with SPC or TIP3P water did not reproduce the NMR data at all. Simulations of a longer peptide from bovine pancreatic trypsin inhibitor, containing the YTGP sequence, did show the interaction between the aromatic ring and the amide hydrogen, but not as pronounced as the simulations of shorter peptides
Solubilization of Poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)] fluorene-2,7-diyl} in Water by Nonionic Amphiphiles
In the presence of the nonionic alkyloxyethylene surfactant n-dodecylpentaoxyethylene glycol ether (C12E5), the anionic conjugated polyelectrolyte (CPE) poly{1,4-phenylene-[9,9-bis(4-phenoxy-butylsulfonate)]fluorene-2,7-diyl} (PBS-PFP) dissolves in water, leading to a blue shift in fluorescence and dramatic increases in fluorescence quantum yields above the surfactant critical micelle concentration (cmc). No significant changes were seen with a poly(ethylene oxide) of similar size to the surfactant headgroup, confirming that specific surfactant−polyelectrolyte interactions are important. From UV−visible and fluorescence spectroscopy, dynamic light scattering (DLS), small-angle X-ray scattering (SAXS), cryogenic transmission electron microscopy (cryo-TEM), and electrical conductivity, together with our published NMR and small-angle neutron scattering (SANS) results, we provide a coherent model for this behavior in terms of breakup of PBS-PFP clusters through polymer−surfactant association leading to cylindrical aggregates containing isolated polymer chains. This is supported by molecular dynamics simulations, which indicate stable polymer−surfactant structures and also provide indications of the tendency of C12E5 to break up polymer clusters to form these mixed polymer−surfactant aggregates. Radial electron density profiles of the cylindrical cross section obtained from SAXS results reveal the internal structure of such inhomogeneous species. DLS and cryo-TEM results show that at higher surfactant concentrations the micelles start to grow, possibly partially due to formation of long, threadlike species. Other alkyloxyethylene surfactants, together with poly(propylene glycol) and hydrophobically modified poly(ethylene glycol), also solubilize this polymer in water, and it is suggested that this results from a balance between electrostatic (or ion-dipole), hydrophilic, and hydrophobic interactions. There is a small, but significant, dependence of the emission maximum on the local environment
