5 research outputs found

    REGULATION OF THE EXPRESSION OF MITOCHONDRIAL PROTEINS - RELATIONSHIP BETWEEN MTDNA COPY NUMBER AND CYTOCHROME-C-OXIDASE ACTIVITY IN HUMAN-CELLS AND TISSUES

    No full text
    The relationship between the relative amounts of nuclear and mitochondrial genes for cytochrome-c oxidase subunits and their transcripts and cytochrome-c oxidase activity was investigated in several human tissues and cell lines to get more insight into the regulation of the expression of this mitochondrial enzyme complex. The results show: (1) a wide range of mtDNA copy numbers; (2) constant ratios between the steady-state levels of the transcripts for the various cytochrome-c oxidase subunits, and (3) large variations in cytochrome-c oxidase activity in different tissues and cell lines that could not be related to the differences in mtDNA copy number. We conclude that the transcription of genes for both mitochondrial and nuclear cytochrome-c oxidase subunits is regulated coordinatedly, but also that the mtDNA copy number plays a minor role in determining differences in cytochrome-c oxidase activity between different cell and tissue types

    Multilayer Nanostructured Porphyrin Arrays Constructed by Layer-by-Layer Self-Assembly

    No full text
    UV−vis absorption, atomic force microscopy (AFM), contact angle, and X-ray reflectivity experiments were performed on thin films deposited on crystalline silicon substrates as alternating layers of a porphyrin with anionic functionality, tetra-5,10,15,20-(4-sulfonatophenyl)porphine (TSPP) or the metalated version, Cu(II)TSPP, and the cationic polyelectrolyte, poly(diallyldimethylammonium chloride) (PDDA). The films were made by dipping in alternating aqueous solutions containing film components (layer-by-layer deposition). Modeling of the X-ray reflectivity data revealed differences in the films’ thickness depending on the method of film deposition. An unusual decrease in film thickness after each polyelectrolyte dip was also observed for films using TSSP. UV−vis measurements revealed that a similar amount of TSSP was included within films despite the method of formation. UV−vis measurements also revealed the presence of free-base, H-aggregate, and J-aggregate forms of the porphyrin after TSPP dipping, and the subsequent disappearance of the J-aggregate after dipping in the PDDA solution. A model of film formation was proposed on the basis of the concept of two different types of porphyrin aggregates being present after dipping in porphyrin solution. A layer of porphyrin molecules initially attach to the Si surface such that the planar molecules are arranged side by side as H-aggregates with an excess of J-aggregated material on top. The J-aggregate is then removed and replaced by a layer of PDDA. A change in contact angle of 14° was observed between porphyrin and polyelectrolyte layers due to the more hydrophobic nature of the polymer. The presence of the J-aggregate was confirmed in AFM images obtained from the porphyrin layer. Exposure of the films to solutions of alternating pHs of 10 and 1.8 resulted in reproducible switching of the UV−vis spectra, indicating a possible sensing application
    corecore