3 research outputs found

    Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based recommendations for clinical practice

    Get PDF
    Interventional radiology plays an important and increasing role in cancer treatment. Follow-up is important to be able to assess treatment success and detect locoregional and distant recurrence and recommendations for follow-up are needed. At ECIO 2018, a joint ECIO-ESOI session was organized to establish follow-up recommendations for oncologic intervention in liver, renal, and lung cancer. Treatments included thermal ablation, TACE, and TARE. In total five topics were evaluated: ablation in colorectal liver metastases (CRLM), TARE in CRLM, TACE and TARE in HCC, ablation in renal cancer, and ablation in lung cancer. Evaluated modalities were FDG-PET-CT, CT, MRI, and (contrast-enhanced) ultrasound. Prior to the session, five experts were selected and performed a systematic review and presented statements, which were voted on in a telephone conference prior to the meeting by all panelists. These statements were presented and discussed at the ECIO-ESOI session at ECIO 2018. This paper presents the recommendations that followed from these initiatives. Based on expert opinions and the available evidence, follow-up schedules were proposed for liver cancer, renal cancer, and lung cancer. FDG-PET-CT, CT, and MRI are the recommended modalities, but one should beware of false-positive signs of residual tumor or recurrence due to inflammation early after the intervention. There is a need for prospective preferably multicenter studies to validate new techniques and new response criteria. This paper presents recommendations that can be used in clinical practice to perform the follow-up of patients with liver, lung, and renal cancer who were treated with interventional locoregional therapies

    Follow-up after radiological intervention in oncology: ECIO-ESOI evidence and consensus-based recommendations for clinical practice

    No full text
    Interventional radiology plays an important and increasing role in cancer treatment. Follow-up is important to be able to assess treatment success and detect locoregional and distant recurrence and recommendations for follow-up are needed. At ECIO 2018, a joint ECIO-ESOI session was organized to establish follow-up recommendations for oncologic intervention in liver, renal, and lung cancer. Treatments included thermal ablation, TACE, and TARE. In total five topics were evaluated: ablation in colorectal liver metastases (CRLM), TARE in CRLM, TACE and TARE in HCC, ablation in renal cancer, and ablation in lung cancer. Evaluated modalities were FDG-PET-CT, CT, MRI, and (contrast-enhanced) ultrasound. Prior to the session, five experts were selected and performed a systematic review and presented statements, which were voted on in a telephone conference prior to the meeting by all panelists. These statements were presented and discussed at the ECIO-ESOI session at ECIO 2018. This paper presents the recommendations that followed from these initiatives. Based on expert opinions and the available evidence, follow-up schedules were proposed for liver cancer, renal cancer, and lung cancer. FDG-PET-CT, CT, and MRI are the recommended modalities, but one should beware of false-positive signs of residual tumor or recurrence due to inflammation early after the intervention. There is a need for prospective preferably multicenter studies to validate new techniques and new response criteria. This paper presents recommendations that can be used in clinical practice to perform the follow-up of patients with liver, lung, and renal cancer who were treated with interventional locoregional therapies

    Independent validation of CT radiomics models in colorectal liver metastases:predicting local tumour progression after ablation

    Get PDF
    OBJECTIVES: Independent internal and external validation of three previously published CT-based radiomics models to predict local tumor progression (LTP) after thermal ablation of colorectal liver metastases (CRLM). MATERIALS AND METHODS: Patients with CRLM treated with thermal ablation were collected from two institutions to collect a new independent internal and external validation cohort. Ablation zones (AZ) were delineated on portal venous phase CT 2-8 weeks post-ablation. Radiomics features were extracted from the AZ and a 10 mm peri-ablational rim (PAR) of liver parenchyma around the AZ. Three previously published prediction models (clinical, radiomics, combined) were tested without retraining. LTP was defined as new tumor foci appearing next to the AZ up to 24 months post-ablation. RESULTS: The internal cohort included 39 patients with 68 CRLM and the external cohort 52 patients with 78 CRLM. 34/146 CRLM developed LTP after a median follow-up of 24 months (range 5-139). The median time to LTP was 8 months (range 2-22). The combined clinical-radiomics model yielded a c-statistic of 0.47 (95%CI 0.30-0.64) in the internal cohort and 0.50 (95%CI 0.38-0.62) in the external cohort, compared to 0.78 (95%CI 0.65-0.87) in the previously published original cohort. The radiomics model yielded c-statistics of 0.46 (95%CI 0.29-0.63) and 0.39 (95%CI 0.28-0.52), and the clinical model 0.51 (95%CI 0.34-0.68) and 0.51 (95%CI 0.39-0.63) in the internal and external cohort, respectively. CONCLUSION: The previously published results for prediction of LTP after thermal ablation of CRLM using clinical and radiomics models were not reproducible in independent internal and external validation. CLINICAL RELEVANCE STATEMENT: Local tumour progression after thermal ablation of CRLM cannot yet be predicted with the use of CT radiomics of the ablation zone and peri-ablational rim. These results underline the importance of validation of radiomics results to test for reproducibility in independent cohorts. KEY POINTS: • Previous research suggests CT radiomics models have the potential to predict local tumour progression after thermal ablation in colorectal liver metastases, but independent validation is lacking. • In internal and external validation, the previously published models were not able to predict local tumour progression after ablation. • Radiomics prediction models should be investigated in independent validation cohorts to check for reproducibility
    corecore