24 research outputs found

    Composition of the mucosa-associated microbiota along the entire gastrointestinal tract of human individuals

    Get PDF
    Background: Homeostasis of the gastrointestinal tract depends on a healthy bacterial microbiota, with alterations in microbiota composition suggested to contribute to diseases. To unravel bacterial contribution to disease pathology, a thorough understanding of the microbiota of the complete gastrointestinal tract is essential. To date, most microbial analyses have either focused on faecal samples, or on the microbial constitution of one gastrointestinal location instead of different locations within one individual. Objective: We aimed to analyse the mucosal microbiome along the entire gastrointestinal tract within the same individuals. Methods: Mucosal biopsies were taken from nine different sites in 14 individuals undergoing antegrade and subsequent retrograde double-balloon enteroscopy. The bacterial composition was characterised using 16 S rRNA sequencing with Illumina Miseq. Results: At double-balloon enteroscopy, one individual had a caecal adenocarcinoma and one individual had Peutz-Jeghers polyps. The composition of the microbiota distinctively changed along the gastrointestinal tract with larger bacterial load, diversity and abundance of Firmicutes and Bacteroidetes in the lower gastrointestinal tract than the upper gastrointestinal tract, which was predominated by Proteobacteria and Firmicutes. Conclusions: We show that gastrointestinal location is a larger determinant of mucosal microbial diversity than inter-person differences. These data provide a baseline for further studies investigating gastrointestinal microbiota-related disease

    Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett's esophagus and esophageal adenocarcinoma

    Get PDF
    Background: The continuous exposure of esophageal epithelium to refluxate may induce ectopic expression of bile-responsive genes and contribute to the development of Barrett's esophagus (BE) and esophageal adenocarcinoma. In normal physiology of the gut and liver, the nuclear receptor Pregnane × Receptor (PXR) is an important factor in the detoxification of xenobiotics and bile acid homeostasis. This study aimed to investigate the expression and genetic variation of PXR in reflux esophagitis (RE), Barrett's esophagus (BE) and esophageal adenocarcinoma.Methods: PXR mRNA levels and protein expression were determined in biopsies from patients with adenocarcinoma, BE, or RE, and healthy controls. Esophageal cell lines were stimulated with lithocholic acid and rifampicin. PXR polymorphisms 25385C/T, 7635A/G, and 8055C/T were genotyped in 249 BE patients, 233 RE patients, and 201 controls matched for age and gender.Results: PXR mRNA levels were significantly higher in adenocarcinoma tissue and columnar Barrett's epithelium, compared to squamous epithelium of these BE patients (P < 0.001), and RE patients (P = 0.003). Immunohistochemical staining of PXR showed predominantly cytoplasmic expression in BE tissue, whereas nuclear expression was found in adenocarcinoma tissue. In cell lines, stimulation with lithocholic acid did not increase PXR mRNA levels, but did induce nuclear translocation of PXR protein. Genotyping of the PXR 7635A/G polymorphism revealed that the G allele was significantly more prevalent in BE than in RE or controls (P = 0.037).Conclusions: PXR expresses in BE and adenocarcinoma tissue, and showed nuclear localization in adenocarcinoma tissue. Upon stimulation with lithocholic acid, PXR translocates to the nuclei of OE19 adenocarcinoma cells. Together with the observed association of a PXR polymorphism and BE, this data implies that PXR may have a function in prediction and treatment of esophageal disease

    Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus

    Get PDF
    Barrett’s Esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia. Barrett’s Esophagus strongly predisposes to esophageal adenocarcinoma (EAC), a tumour with a very poor prognosis. We have undertaken the first genome-wide association study on Barrett’s Esophagus, comprising 1,852 UK cases and 5,172 UK controls in discovery and 5,986 cases and 12,825 controls in the replication. Two regions were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined=4.09×10−9, OR(95%CI) =1.21(1.13-1.28)) and chromosome 16q24, rs9936833 (Pcombined=2.74×10−10, OR(95%CI) =1.14(1.10-1.19)). The top SNP on chromosome 6p21 is within the major histocompatibility complex, and the closest protein-coding gene to rs9936833 on chromosome 16q24 is FOXF1, which is implicated in esophageal development and structure. We found evidence that the genetic component of Barrett’s Esophagus is mediated by many common variants of small effect and that SNP alleles predisposing to obesity also increase risk for Barrett’s Esophagus

    Differential expression of the nuclear receptors farnesoid X receptor (FXR) and pregnane X receptor (PXR) for grading dysplasia in patients with Barrett's oesophagus

    No full text
    International audienceAims: To investigate expression of nuclear receptors FXR and PXR as a diagnostic tool to improve grading of dysplasia in Barrett's oesophagus patients. Methods and Results: Immunostaining was analyzed on a total of 192 biopsy samples of of 22 Barrett's patients with no dysplasia (ND), 17 with low grade dysplasia (LGD), 20 high grade dysplasia (HGD), and 24 with adenocarcinoma. Nuclear FXR expression was observed in 15/22 (68%) ND cases versus 5/60 (8%) patients with dysplasia or adenocarcinoma (p<0.001). FXR expression was highly specific for non-dysplastic tissue. Nuclear PXR was expressed in 16/20 (80%) HGD cases versus 2/16 (13%) LGD cases (PPV 89%). Upon examining adjacent tissue taken from HGD and adenocarcinoma patients, PXR expression was high in samples of all tissue types. Conclusions: Nuclear receptors are differentially expressed during neoplastic progression with FXR-positivity being useful to distinguish ND from dysplasia and adenocarcinoma. PXR nuclear expression is able to separate HGD from LGD and ND. The combination of FXR and PXR appears to have diagnosticand possibly prognostic value as well, but future prospective studies are required to investigate their predictive power for dysplastic progression in Barret's oesophagus

    Leukocyte infiltration and tumor cell plasticity are parameters of aggressiveness in primary cutaneous melanoma

    No full text
    Various clinical and experimental observations detected an immunological host defense in cutaneous melanoma. In order to investigate the prognostic value of leukocyte effector mechanisms, we examined the presence of different subsets of leukocytes in tumor samples of 58 patients diagnosed with primary cutaneous melanoma. The presence of T lymphocytes, cytotoxic T lymphocytes, B lymphocytes, CD16+ cells and macrophages was correlated to Breslow depth. A significantly higher amount of several subsets of leukocytes was found in samples with a more progressed tumor stage and survival analysis demonstrated that a higher amount of T lymphocytes and CD16+ cells was associated with a short survival. The amount of FOXP3+ regulatory T lymphocytes did not correlate with survival, nevertheless, it correlated with the amount of total infiltrate. In contrast, analysis of the expression of CD69, a marker for activated lymphocytes, demonstrated that patients with a higher amount of CD69+ lymphocytes had a better survival. In addition, a new parameter for aggressiveness of melanoma, tumor cell plasticity [i.e., the presence of periodic acid Schiff's (PAS) reagent positive loops], also predicted short survival and a trend of a higher amount of tumor infiltrating leukocytes in tumors with PAS positive loops was observed. These findings demonstrate that leukocyte infiltration and the presence of PAS loops is a sign of tumor aggressiveness and may have prognostic value
    corecore