322 research outputs found

    First CO J=6-5, 4-3 detections in local ULIRGs: the dense gas in Mrk231, and its colling budget

    Full text link
    We report on detections of the high-excitation CO J=6-5, J=4-3 lines in Mrk231, a prototypical Ultra Luminous Infrared Galaxy (ULIRG) and Seyfert 1 QSO. These observations are combined with CO J=3-2, HCN J=4-3 (this work), and CO J=2-1, J=1-0, 13CO J=2-1, HCN J=1-0 measurements taken from the literature to provide better constraints on the properties of the molecular gas in an extreme starburst/QSO in the local Universe. We find that the CO J=4-3 and J=6-5 transitions trace a different gas phase from that dominating the lower three CO transitions, with n(H_2) ~ (1-3)x10^4 cm-3 and Tk ~ (40-70) K. This phase is responsible for the luminous HCN emission, and contains most of the H2 gas mass of this galaxy. The total CO line cooling emanating from this dense phase is found similar to that of the [CII] line at 158 micron, suggesting a very different thermal balance to that seen in lower IR-luminosity galaxies, and one likely dominated by dense photon-dominated regions. Our dense "sampling" of the CO rotational ladder and the HCN lines enables us to produce well-constrained Spectral Line Energy Distributions (SLEDs) for the dense molecular gas in Mrk231 and compare them to those of high redshift starbursts, many of which have SLEDs that may be affected by strong lensing. Finally, we use our local molecular line excitation template to assess the capabilities of future cm and mm/sub-mm arrays in detecting CO and HCN transitions in similar systems throughout the local and distant universe.Comment: accepted for publication in The Astrophysical Journal; 37 pages, preprint format; 5 figures (2 in color

    The spatial distribution of excited H_2 in T Tau: a molecular outflow in a young binary system

    Get PDF
    Strong extended emission from molecular hydrogen in the v = 1 → 0 S(l) transition is mapped around T Tau. In addition, the v = 2 → 1 S(l) line is detected close to the star. The ratio of the two transitions is consistent with an excitation process in which both fluorescence by stellar ultraviolet radiation and collisions in a warm, dense medium play a role. The morphology is interpreted as emission from a molecular outflow which appears to wiggle as a result of the fact that T Tau is a binary system seen almost pole-on. It is shown that an outflow with a small opening angle can reproduce the observed extended emission. From comparison with previous studies it is argued that the molecular outflow originates from T Tau S, the infrared component. The presented model constrains the orientation and geometry of the system

    Warm molecular gas temperature distribution in six local infrared bright Seyfert galaxies

    Get PDF
    We simultaneously analyze the spectral line energy distributions (SLEDs) of CO and H2 of six local luminous infrared (IR) Seyfert galaxies. For the CO SLEDs, we used new Herschel/SPIRE FTS data (from J=4-3 to J=13-12) and ground-based observations for the lower-J CO transitions. The H2 SLEDs were constructed using archival mid-IR Spitzer/IRS and near-IR VLT/SINFONI data for the rotational and ro-vibrational H2 transitions, respectively. In total, the SLEDs contain 26 transitions with upper level energies between 5 and 15000 K. A single, constant density, model (nH2_{H_2} ~ 104.5−6^{4.5-6} cm−3^{-3}) with a broken power-law temperature distribution reproduces well both the CO and H2 SLEDs. The power-law indices are β1\beta_1 ~ 1-3 for warm molecular gas (20 K < T 100 K). We show that the steeper temperature distribution (higher β\beta) for hot molecular gas can be explained by shocks and photodissociation region (PDR) models, however, the exact β\beta values are not reproduced by PDR or shock models alone and a combination of both is needed. We find that the three major mergers among our targets have shallower temperature distributions for warm molecular gas than the other three spiral galaxies. This can be explained by a higher relative contribution of shock excitation, with respect to PDR excitation, for the warm molecular gas in these mergers. For only one of the mergers, IRASF 05189-2524, the shallower H2 temperature distribution differs from that of the spiral galaxies. The presence of a bright active galactic nucleus in this source might explain the warmer molecular gas observed.Comment: A&A in press; 15 pages, 7 figures. Fixed several typo
    • …
    corecore