56 research outputs found

    Cis-Preferential Stimulation of Alfalfa Mosaic Virus RNA 3 Accumulation by the Viral Coat Protein

    Get PDF
    AbstractRNA 3 of alfalfa mosaic virus (AlMV) encodes the movement protein P3 and the viral coat protein (CP) which is translated from the subgenomic RNA 4. RNA 3 is able to replicate in tobacco plants transformed with the AlMV replicase genes P1 and P2 (P12 plants). Frameshifts or deletions in the P3 gene have little effect on RNA 3 accumulation in P12 protoplasts whereas such mutations in the CP gene result in a 100-fold reduction of plus-strand RNA 3 accumulation. When P12 protoplasts were inoculated with a mixture of a RNA 3 mutant with a deletion in the P3 gene and a mutant with a deletion in the CP gene, CP expressed by the P3 mutant was unable to upregulate plus-strand RNA accumulation of the CP mutant. However, when a wild-type CP gene and subgenomic promoter were inserted in a RNA 3 mutant with a defective CP gene, the mutant accumulated at wild-type levels. It is concluded that the function of CP in plus-strand RNA 3 accumulation actsin cisand cannot be complementedin trans.In P12 plants, P3 and CP mutants were able to complement each other at low and variable levels. This complementation in plants appeared to be correlated with the occurrence of recombination to wild-type RNA 3

    Allele mining in solanum: conserved homologues of Rpi-blb 1 are identified in Solanum stoloniferum

    Get PDF
    Allele mining facilitates the discovery of novel resistance (R) genes that can be used in breeding programs and sheds light on the evolution of R genes. Here we focus on two R genes, Rpi-blb1 and Rpi-blb2, originally derived from Solanum bulbocastanum. The Rpi-blb1 gene is part of a cluster of four paralogues and is flanked by RGA1-blb and RGA3-blb. Highly conserved RGA1-blb homologues were discovered in all the tested tuber-bearing (TB) and non-tuber-bearing (NTB) Solanum species, suggesting RGA1-blb was present before the divergence of TB and NTB Solanum species. The frequency of the RGA3-blb gene was much lower. Interestingly, highly conserved Rpi-blb1 homologues were discovered not only in S. bulbocastanum but also in Solanum stoloniferum that is part of the series Longipedicellata. Resistance assays and genetic analyses in several F1 populations derived from the relevant late blight resistant parental genotypes harbouring the conserved Rpi-blb1 homologues, indicated the presence of four dominant R genes, designated as Rpi-sto1, Rpi-plt1, Rpi-pta1 and Rpi-pta2. Furthermore, Rpi-sto1 and Rpi-plt1 resided at the same position on chromosome VIII as Rpi-blb1 in S. bulbocastanum. Segregation data also indicated that an additional unknown late blight resistance gene was present in three populations. In contrast to Rpi-blb1, no homologues of Rpi-blb2 were detected in any material examined. Hypotheses are proposed to explain the presence of conserved Rpi-blb1 homologues in S. stoloniferum. The discovery of conserved homologues of Rpi-blb1 in EBN 2 tetraploid species offers the possibility to more easily transfer the late blight resistance genes to potato varieties by classical breeding

    Gene transcription analysis during interaction between potato and Ralstonia solanacearum

    Get PDF
    Bacterial wilt (BW) caused by Ralstonia solanacearum (Rs) is an important quarantine disease that spreads worldwide and infects hundreds of plant species. The BW defense response of potato is a complicated continuous process, which involves transcription of a battery of genes. The molecular mechanisms of potato-Rs interactions are poorly understood. In this study, we combined suppression subtractive hybridization and macroarray hybridization to identify genes that are differentially expressed during the incompatible interaction between Rs and potato. In total, 302 differentially expressed genes were identified and classified into 12 groups according to their putative biological functions. Of 302 genes, 81 were considered as Rs resistance-related genes based on the homology to genes of known function, and they have putative roles in pathogen recognition, signal transduction, transcription factor functioning, hypersensitive response, systemic acquired resistance, and cell rescue and protection. Additionally, 50 out of 302 genes had no match or low similarity in the NCBI databases, and they may represent novel genes. Of seven interesting genes analyzed via RNA gel blot and semi-quantitative RT-PCR, six were induced, one was suppressed, and all had different transcription patterns. The results demonstrate that the response of potato against Rs is rapid and involves the induction of numerous various genes. The genes identified in this study add to our knowledge of potato resistance to Rs

    Societal Costs of Late Blight in Potato and Prospects of Durable Resistance Through Cisgenic Modification

    Get PDF
    In the European Union almost 6 Mha of potatoes are grown representing a value of close to ¿6,000,000,000. Late blight caused by Phytophthora infestans causes annual losses (costs of control and damage) estimated at more than ¿1,000,000,000. Chemical control is under pressure as late blight becomes increasingly aggressive and there is societal resistance against the use of environmentally unfriendly chemicals. Breeding programmes have not been able to markedly increase the level of resistance of current potato varieties. New scientific approaches may yield genetically modified marker-free potato varieties (either trans- and/or cisgenic, the latter signifying the use of indigenous resistance genes) as improved variants of currently used varieties showing far greater levels of resistance. There are strong scientific investments needed to develop such improved varieties but these varieties will have great economic and environmental impact. Here we present an approach, based on (cisgenic) resistance genes that will enhance the impact. It consists of five themes: the detection of R-genes in the wild potato gene pool and their function related to the various aspects in the infection route and reproduction of the late blight causing pathogen; cloning of natural R-genes and transforming cassettes of single or multiple (cisgenic) R-genes into existing varieties with proven adaptation to improve their value for consumers; selection of true to the wild type and resistant genotypes with similar qualities as the original variety; spatial and temporal resistance management research of late blight of the cisgenic genetically modified (GM) varieties that contain different cassettes of R-genes to avoid breaking of resistance and reduce build-up of epidemics; communication and interaction with all relevant stakeholders in society and transparency in what research is doing. One of the main challenges is to explain the different nature and possible biological improvement and legislative repercussions of cisgenic GM-crops in comparison with transgenic GM-crops. It is important to realize that the present EU Directive 2001/18/EC on GM crops does not make a difference between trans- and cisgenes. These rules were developed when only transgenic GM plants were around. We present a case arguing for an updating and refinement of these rules in order to place cisgenic GM-crops in another class of GM-plants as has been done in the past with (induced) mutation breeding and the use of protoplast fusion between crossable species. Keywords Cisgenesis - Cloning - Communication - Late blight - Phytophthora infestans - Potato - Resistance management - Selection - Transformatio

    High resolution mapping of a novel late blight resistance gene Rpi-avll, from the wild Bolivian species Solanum avilesii

    Get PDF
    Both Mexico and South America are rich in Solanum species that might be valuable sources of resistance (R) genes to late blight (Phytophthora infestans). Here, we focus on an R gene present in the diploid Bolivian species S. avilesii. The genotype carrying the R gene was resistant to eight out of 10 Phytophthora isolates of various provenances. The identification of a resistant phenotype and the generation of a segregating population allowed the mapping of a single dominant R gene, Rpi-avl1, which is located in an R gene cluster on chromosome 11. This R gene cluster is considered as an R gene “hot spot”, containing R genes to at least five different pathogens. High resolution mapping of the Rpi-avl1 gene revealed a marker co-segregating in 3890 F1 individuals, which may be used for marker assisted selection in breeding programs and for further cloning of Rpi-avl

    Characterization and high-resolution mapping of a late blight resistance locus similar to R2 in potato

    Get PDF
    Identification of resistance (R) genes to Phytophthora infestans is an essential step in molecular breeding of potato. We identified three specific R genes segregating in a diploid mapping population. One of the R genes is located on chromosome 4 and proved phenotypically indistinguishable from the Solanum demissum-derived R2, although S. demissum is not directly involved in the pedigree of the population. By bulked segregant analysis combined with a resistance assay, a genetic linkage map of the R2-like locus was constructed with 30 coupling and 23 repulsion phase AFLP markers. Two markers flanking the R2-like locus were applied to screen an extended population of 1,586 offspring. About 103 recombinants were selected, and an accurate high-resolution map was constructed. The R2-like resistance was localized in a 0.4 cM interval and was found co-segregating with four AFLP markers, which can be used to isolate the R2-like gene by map-based gene cloning. By analyzing race-specificity and R gene-specific molecular markers, we also found that an R1-like gene and an additional unknown R gene are segregating in the populatio

    The genome of the cucumber, Cucumis sativus L.

    No full text
    Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular syste

    The genome of the cucumber, Cucumis sativus L.

    No full text
    Cucumber is an economically important crop as well as a model system for sex determination studies and plant vascular biology. Here we report the draft genome sequence of Cucumis sativus var. sativus L., assembled using a novel combination of traditional Sanger and next-generation Illumina GA sequencing technologies to obtain 72.2-fold genome coverage. The absence of recent whole-genome duplication, along with the presence of few tandem duplications, explains the small number of genes in the cucumber. Our study establishes that five of the cucumber's seven chromosomes arose from fusions of ten ancestral chromosomes after divergence from Cucumis melo. The sequenced cucumber genome affords insight into traits such as its sex expression, disease resistance, biosynthesis of cucurbitacin and 'fresh green' odor. We also identify 686 gene clusters related to phloem function. The cucumber genome provides a valuable resource for developing elite cultivars and for studying the evolution and function of the plant vascular syste
    corecore