57 research outputs found

    Transmural Heterogeneity of Myofilament Function and Sarcomeric Protein Phosphorylation in Remodeled Myocardium of Pigs with a Recent Myocardial Infarction

    Get PDF
    Aim: Transmural differences in sarcomeric protein composition and function across the left ventricular (LV) wall have been reported. We studied in pigs sarcomeric function and protein phosphorylation in subepicardial (EPI) and subendocardial (ENDO) layers of remote LV myocardium after myocardial infarction (MI), induced by left circumflex coronary artery ligation. Methods: EPI and ENDO samples were taken 3 weeks after sham surgery (n = 12) or induction of MI (n = 12) at baseline (BL) and during β-adrenergic receptor (βAR) stimulation with dobutamine. Isometric force was measured in single cardiomyocytes at various [Ca2+] and 2.2 μm sarcomere length. Results: In sham hearts, no significant transmural differences were observed in myofilament function or protein phosphorylation. Myofilament Ca2+-sensitivity was significantly higher in both EPI and ENDO of MI compared to sham hearts. Maximal force was significantly reduced in MI compared to sham, but solely in ENDO cells. A higher passive force was observed in MI hearts, but only in EPI cells. The proportion of stiff N2B isoform was higher in EPI than in ENDO in both sham and MI hearts, and a trend toward increased N2B-proportion appeared in MI EPI, but not MI Endo. Analysis of myofilament protein phosphorylation did not reveal significant transmural differences in phosphorylation of myosin binding protein C, desmin, troponin T, troponin I (cTnI), and myosin light chain 2 (MLC-2) both at BL and during βAR stimulation with dobutamine infusion. A significant increase in MLC-2 phosphorylation was observed during dobutamine only in sham. In addition, the increase in cTnI phosphorylation upon dobutamine was twofold lower in MI than in sham. Conclusion: Myofilament dysfunction is present in both EPI and ENDO in post-MI remodeled myocardium, but shows a high degree of qualitative heterogeneity across the LV wall. These heterogeneous transmural changes in sarcomeric properties likely contribute differently to systolic vs. diastolic global LV dysfunction after MI

    Cardiovascular Function of Modern Pigs Does not Comply with Allometric Scaling Laws

    Get PDF
    Growing concerns have been expressed regarding cardiovascular performance in modern farm pigs, which has been proposed as a critical factor contributing to the reduced adaptability of modern pigs to stress. Here we tested the hypothesis that cardiac dimensions and pump function in modern heavy farm pigs are disproportionally low for their body weight, and investigated potential underlying mechanisms. The results from the present study indeed demonstrate disproportionally low values for stroke volume and cardiac output in pigs with bodyweights over 150 kg. Importantly, these low values were not the result of impaired left ventricular (LV) systolic contractile function, but were due to a disproportionally small LV end-diastolic volume. The latter was associated with changes in determinants of LV passive stiffness, including (i) an increase in LV myocardial collagen, (ii) a shift from the compliant N2BA titin isoform towards the stiff N2B, and (iii) a marked elevation of aortic blood pressure. Taken together, these results demonstrate reduced pumping capacity of the hearts of heavy modern pigs, due to structural abnormalities in the LV myocardium

    The microtubule signature in cardiac disease:etiology, disease stage, and age dependency

    Get PDF
    Employing animal models to study heart failure (HF) has become indispensable to discover and test novel therapies, but their translatability remains challenging. Although cytoskeletal alterations are linked to HF, the tubulin signature of common experimental models has been incompletely defined. Here, we assessed the tubulin signature in a large set of human cardiac samples and myocardium of animal models with cardiac remodeling caused by pressure overload, myocardial infarction or a gene defect. We studied levels of total, acetylated, and detyrosinated α-tubulin and desmin in cardiac tissue from hypertrophic (HCM) and dilated cardiomyopathy (DCM) patients with an idiopathic (n = 7), ischemic (n = 7) or genetic origin (n = 59), and in a pressure-overload concentric hypertrophic pig model (n = 32), pigs with a myocardial infarction (n = 28), mature pigs (n = 6), and mice (n = 15) carrying the HCM-associated MYBPC3 2373insG mutation. In the human samples, detyrosinated α-tubulin was increased 4-fold in end-stage HCM and 14-fold in pediatric DCM patients. Acetylated α-tubulin was increased twofold in ischemic patients. Across different animal models, the tubulin signature remained mostly unaltered. Only mature pigs were characterized by a 0.5-fold decrease in levels of total, acetylated, and detyrosinated α-tubulin. Moreover, we showed increased desmin levels in biopsies from NYHA class II HCM patients (2.5-fold) and the pressure-overload pig model (0.2–0.3-fold). Together, our data suggest that desmin levels increase early on in concentric hypertrophy and that animal models only partially recapitulate the proliferated and modified tubulin signature observed clinically. Our data warrant careful consideration when studying maladaptive responses to changes in the tubulin content in animal models. Graphical Abstract: [Figure not available: see fulltext.].</p

    Cardiac remodelling in a swine model of chronic thromboembolic pulmonary hypertension: comparison of right vs. left ventricle

    Get PDF
    Key points: Right ventricle (RV) function is the most important determinant of survival and quality of life in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The changes in right and left ventricle gene expression that contribute to ventricular remodelling are incompletely investigated. RV remodelling in our CTEPH swine model is associated with increased expression of the genes involved in inflammation (TGFβ), oxidative stress (ROCK2, NOX1 and NOX4), and apoptosis (BCL2 and caspase-3). Alterations in ROCK2 expression correlated inversely with RV contractile reserve during exercise. Since ROCK2 has been shown to be involved in hypertrophy, oxidative stress, fibrosis and endothelial dysfunction, ROCK2 inhibition may present a viable therapeutic target in CTEPH. Abstract: Right ventricle (RV) function is the most important determinant of survival and quality of life in patients with chronic thromboembolic pulmonary hypertension (CTEPH). The present study investigated whether the increased cardiac afterload is associated with (i) cardiac remodelling and hypertrophic signalling; (ii) changes in angiogenic factors and capillary density; and (iii) inflammatory changes associated with oxidative stress and interstitial fibrosis. CTEPH was induced in eight chronically instrumented swine by chronic nitric oxide synthase inhibition and up to five weekly pulmonary embolizations. Nine healthy swine served as a control. After 9 weeks, RV function was assessed by single beat analysis of RV–pulmonary artery (PA) coupling at rest and during exercise, as well as by cardiac magnetic resonance imaging. Subsequently, the heart was excised and RV and left ventricle (LV) tissues were processed for molecular and histological analyses. Swine with CTEPH exhibited significant RV hypertrophy in response to the elevated PA pressure. RV–PA coupling was significantly reduced, correlated inversely with pulmonary vascular resistance and did not increase during exercise in CTEPH swine. Expression of genes associated with hypertroph

    Patients with Biallelic BRCA1/2 Inactivation respond to Olaparib treatment across Histologic tumor types

    Get PDF
    Purpose: To assess the efficacy of olaparib, a PARP inhibitor (PARPi) in patients with tumors with BRCA1/2 mutations, regardless of histologic tumor type. Patients and Methods: Patients with treatment-refractory BRCA1/2-mutated cancer were included for treatment with offlabel olaparib 300 mg twice daily until disease progression or unacceptable toxicity. In Drug Rediscovery Protocol (DRUP), patients with treatment-refractory solid malignancies receive offlabel drugs based on tumor molecular profiles while whole-genome sequencing (WGS) is performed on baseline tumor biopsies. The primary endpoint was clinical benefit (CB; defined as objective response or stable disease ≥ 16 weeks according to RECIST 1.1). Per protocol patients were enrolled using a Simon-like two-stage model. Results: Twenty-four evaluable patients with nine different tumor types harboring BRCA1/2 mutations were included, 58% had CB from treatment with olaparib. CB was observed in patients with complete loss of function (LoF) of BRCA1/2, while 73% of patients with biallelic BRCA LoF had CB. In 17 patients with and seven without current labeled indication, 10 and four patients had CB, respectively. Treatment resistance in four patients with biallelic loss might be explained by an additional oncogenic driver which was discovered by WGS, including Wnt pathway activation, FGFR amplification, and CDKN2A loss, in three tumor types. Conclusions: These data indicate that using PARPis is a promising treatment strategy for patients with non-BRCA-associated histologies harboring biallelic BRCA LoF. WGS allows to accurately detect complete LoF of BRCA and homologous repair deficiency (HRD) signature as well as oncogenic drivers that may contribute to resistance, using a single assay

    Myofilament dysfunction in cardiac disease from mice to men

    Get PDF
    In healthy human myocardium a tight balance exists between receptor-mediated kinases and phosphatases coordinating phosphorylation of regulatory proteins involved in cardiomyocyte contractility. During heart failure, when neurohumoral stimulation increases to compensate for reduced cardiac pump function, this balance is perturbed. The imbalance between kinases and phosphatases upon chronic neurohumoral stimulation is detrimental and initiates cardiac remodelling, and phosphorylation changes of regulatory proteins, which impair cardiomyocyte function. The main signalling pathway involved in enhanced cardiomyocyte contractility during increased cardiac load is the β-adrenergic signalling route, which becomes desensitized upon chronic stimulation. At the myofilament level, activation of protein kinase A (PKA), the down-stream kinase of the β-adrenergic receptors (β-AR), phosphorylates troponin I, myosin binding protein C and titin, which all exert differential effects on myofilament function. As a consequence of β-AR down-regulation and desensitization, phosphorylation of the PKA-target proteins within the cardiomyocyte may be decreased and alter myofilament function. Here we discuss involvement of altered PKA-mediated myofilament protein phosphorylation in different animal and human studies, and discuss the roles of troponin I, myosin binding protein C and titin in regulating myofilament dysfunction in cardiac disease. Data from the different animal and human studies emphasize the importance of careful biopsy procurement, and the need to investigate localization of kinases and phosphatases within the cardiomyocyte, in particular their co-localization with cardiac myofilaments upon receptor stimulation.</p

    Patients with Rare Cancers in the Drug Rediscovery Protocol (DRUP) Benefit from Genomics-Guided Treatment

    Get PDF
    Purpose: Patients with rare cancers (incidence less than 6 cases per 100,000 persons per year) commonly have less treatment opportunities and are understudied at the level of genomic targets. We hypothesized that patients with rare cancer benefit from approved anticancer drugs outside their label similar to common cancers. Experimental Design: In the Drug Rediscovery Protocol (DRUP), patients with therapy-refractory metastatic cancers harboring an actionable molecular profile are matched to FDA/European Medicines Agency–approved targeted therapy or immunotherapy. Patients are enrolled in parallel cohorts based on the histologic tumor type, molecular profile and study drug. Primary endpoint is clinical benefit (complete response, partial response, stable disease ≥ 16 weeks). Results: Of 1,145 submitted cases, 500 patients, including 164 patients with rare cancers, started one of the 25 available drugs and were evaluable for treatment outcome. The overall clinical benefit rate was 33% in both the rare cancer and nonrare cancer subgroup. Inactivating alterations of CDKN2A and activating BRAF aberrations were overrepresented in patients with rare cancer compared with nonrare cancers, resulting in more matches to CDK4/6 inhibitors (14% vs. 4%; P ≤ 0.001) or BRAF inhibitors (9% vs. 1%; P ≤ 0.001). Patients with rare cancer treated with small-molecule inhibitors targeting BRAF experienced higher rates of clinical benefit (75%) than the nonrare cancer subgroup. Conclusions: Comprehensive molecular testing in patients with rare cancers may identify treatment opportunities and clinical benefit similar to patients with common cancers. Our findings highlight the importance of access to broad molecular diagnostics to ensure equal treatment opportunities for all patients with cancer

    Cellular, mitochondrial and molecular alterations associate with early left ventricular diastolic dysfunction in a porcine model of diabetic metabolic derangement

    Get PDF
    The prevalence of diabetic metabolic derangement (DMetD) has increased dramatically over the last decades. Although there is increasing evidence that DMetD is associated with cardiac dysfunction, the early DMetD-induced myocardial alterations remain incompletely understood. Here, we studied early DMetD-related cardiac changes in a clinically relevant large animal model. DMetD was established in adult male Gottingen miniswine by streptozotocin injections and a high-fat, high-sugar diet, while control animals remained on normal pig chow. Five months later left ventricular (LV) function was assessed by echocardiography and hemodynamic measurements, followed by comprehensive biochemical, molecular and histological analyses. Robust DMetD developed, evidenced by hyperglycemia, hypercholesterolemia and hypertriglyceridemia. DMetD resulted in altered LV nitrosoredox balance, increased superoxide production-principally due to endothelial nitric oxide synthase (eNOS) uncoupling-reduced nitric oxide (NO) production, alterations in myocardial gene- expressionparticularly genes related to glucose and fatty acid metabolism- and mitochondrial dysfunction. These abnormalities were accompanied by increased passive force of isolated cardiomyocytes, and impaired LV diastolic function, evidenced by reduced LV peak untwist velocity and increased E/e'. However, LV weight, volume, collagen content, and cardiomyocyte cross-sectional area were unchanged at this stage of DMetD. In conclusion, DMetD, in a clinically relevant large-animal model results in myocardial oxidative stress, eNOS uncoupling and reduced NO production, together with an altered metabolic gene expression profile and mitochondrial dysfunction. These molecular alterations are associated with stiffening of the cardiomyocytes and early diastolic dysfunction before any structural cardiac remodeling occurs. Therapies should be directed to ameliorate these early DMetD-induced myocardial changes to prevent the development of overt cardiac failure

    Multiple common comorbidities produce left ventricular diastolic dysfunction associated with coronary microvascular dysfunction, oxidative stress, and myocardial stiffening

    Get PDF
    Aims More than 50% of patients with heart failure have preserved ejection fraction characterized by diastolic dysfunction. The prevalance of diastolic dysfunction is higher in females and associates with multiple comorbidities such as hypertension (HT), obesity, hypercholesterolemia (HC), and diabetes mellitus (DM). Although its pathophysiology remains incompletely understood, it has been proposed that these comorbidities induce systemic inflammation, coronary microvascular dysfunction, and oxidative stress, leading to myocardial fibrosis, myocyte stiffening and, ultimately, diastolic dysfunction. Here, we tested this hypothesis in a swine model chronically exposed to three common comorbidities. Methods and results DM (induced by streptozotocin), HC (produced by high fat diet), and HT (resulting from renal artery embolization), were produced in 10 female swine, which were followed for 6 months. Eight female healthy swine on normal pig-chow served as controls. The DM + HC + HT group showed hyperglycemia, HC, hypertriglyceridemia, renal dysfunction and HT, which were associated with systemic inflammation. Myocardial superoxide production was markedly increased, due to increased NOX activity and eNOS uncoupling, and associated with reduced NO production, and impaired coronary small artery endothelium-dependent vasodilation. These abnormalities were accompanied by increased myocardial collagen content, reduced capillary/fiber ratio, and elevated passive cardiomyocyte stiffness, resulting in an increased left ventricular end-diastolic stiffness (measured by pressure-volume catheter) and a trend towards a reduced E/A ratio (measured by cardiac MRI), while ejection fraction was maintained. Conclusions The combination of three common comorbidities leads to systemic inflammation, myocardial oxidative stress, and coronary microvascular dysfunction, which associate with myocardial stiffening and LV diastolic dysfunction with preserved ejection fraction
    corecore