112 research outputs found

    Historical trophic ecology of some divergent shark and skate species in the Dutch coastal North Sea zone

    Get PDF
    Over the last century the fish community of the Dutch coastal North Sea zone has lost most its shark and skate species. Whether their disappearance has changed the trophic structure of these shallow waters has not been properly investigated. In this study historical dietary data of sharks and skates, being in the past (near)-residents, juvenile marine migrants and marine seasonal visitors of the Dutch coastal North Sea zone were analyzed for the period 1946–1954. Near-resident and juvenile marine migrant species were demersal while all marine seasonal visitors species were pelagic. Based on stomach content composition, the trophic position of four of the various shark and skate species could be reconstructed. The (near)-resident species, the lesser spotted dogfish, the marine juvenile migrant, the starry smooth hound, and the benthopelagic marine seasonal visitor, the thornback ray, had a benthic/demersal diet (polychaetes, molluscs and crustaceans), while the pelagic marine seasonal visitor, the tope shark, fed dominantly on cephalopods and fishes. Diet overlap occurred for fish (tope shark and lesser spotted dogfish), for hermit crabs (lesser spotted dogfish and starry smooth hound) and for shrimps (thornback ray and starry smooth hound). Trophic position ranged from 3.2 for thornback ray preying exclusively on crustaceans to 4.6 for the tope shark consuming higher trophic prey (crustaceans and fish). The analysis indicates that most of the shark and skate species were generalist predators. The calculated trophic positions of shark and skate species indicate that those species were not necessarily at the top of the marine ecosystem food web, but they might have been the top predators of their particular ecological assemblage.</p

    Quantification of marine benthic communities with metabarcoding

    Get PDF
    DNA metabarcoding methods have been implemented in studies aimed at detecting and quantifying marine benthic biodiversity. In such surveys, universal barcodes are amplified and sequenced from environmental DNA. To quantify biodiversity with DNA metabarcoding, a relation between the number of DNA sequences of a species and its biomass and/or the abundance is required. However, this relationship is complicated by many factors, and it is often unknown. In this study, we validate estimates of biomass and abundance from molecular approaches with those from the traditional morphological approach. Abundance and biomass were quantified from 126 samples of benthic intertidal mudflat using traditional morphological approaches and compared with frequency of occurrence and relative read abundance estimates from a molecular approach. A relationship between biomass and relative read abundance was found for two widely dispersed annelid taxa (Pygospio and Scoloplos). None of the other taxons, however, showed such a relationship. We discuss how quantification of abundance and biomass using molecular approaches are hampered by the ecology of DNA i.e. all the processes that determine the amount of DNA in the environment, including the ecology of the benthic species as well as the compositional nature of sequencing data

    Diversity of Wadden Sea macrofauna and meiofauna communities highest in DNA from extractions preceded by cell lysis

    Get PDF
    Metabarcoding of genetic material in environmental samples has increasingly been employed as a means to assess biodiversity, also of marine benthic communities. Current protocols employed to extract DNA from benthic samples and subsequent bioinformatics pipelines differ considerably. The present study compares three commonly deployed metabarcoding approaches against a morphological approach to assess benthic biodiversity in an intertidal bay in the Dutch Wadden Sea. Environmental DNA was extracted using three different approaches; extraction of extracellular DNA, extraction preceded by cell lysis of a sieved fraction of the sediment, and extraction of DNA directly from small amounts of sediment. DNA extractions after lysis of sieved sediment fractions best recovered the macrofauna diversity whereas direct DNA extraction of small amounts of sediment best recovered the meiofauna diversity. Extractions of extracellular DNA yielded the lowest number of OTUs per sample and hence an incomplete view of benthic biodiversity. An assessment of different bioinformatic pipelines and parameters was conducted using a mock sample with a known species composition. The RDP classifier performed better than BLAST for taxonomic assignment of the samples in this study. Novel metabarcodes obtained from local specimens were added to the SILVA 18S rRNA database to improve taxonomic assignment. This study provides recommendations for a general metabarcoding protocol for marine benthic surveys in the Wadden Sea

    Connecting foraging and roosting areas reveals how food stocks explain shorebird numbers

    Get PDF
    Shorebird populations, especially those feeding on shellfish, have strongly declined in recent decades and identifying the drivers of these declines is important for conservation. Changing food stocks are thought to be a key driver of these declines and may also explain why trends have not been uniform across Europe's largest estuary. We therefore investigated how winter population trends of Eurasian oystercatchers (Haematopus ostralegus) were linked to food availability in the Dutch Wadden Sea. Our analysis incorporated two spatial scales, a smaller scale focused on roost counting areas and food available to birds in these areas and a larger spatial scale of tidal basins. A novelty in our study is that we quantify the connectivity between roosting and foraging areas, identified from GPS tracking data. This allowed us to estimate food available to roosting birds and thus how food availability may explain local population trends. At the smaller spatial scale of roost counting areas, there was no clear relationship between available food and the number of roosting oystercatchers, indicating that other factors may drive population fluctuations at finer spatial scales. At the scale of tidal basins, however, there was a significant relationship between population trends and available food, especially cockle Cerastoderma edule,. Mortality and recruitment alone could not account for the large fluctuations in bird counts, suggesting that the site choice of wintering migratory oystercatchers may primarily drive these large fluctuations. Furthermore, the relationship between oystercatcher abundance and benthic food stocks, suggests winter shorebird counts could act as ecological indicators of ecosystem health, informing about the winter status of food stocks at a spatial scale of tidal basins

    The interactive role of predation, competition and habitat conditions in structuring an intertidal bivalve population

    Get PDF
    Habitat characteristics, predation and competition are known to interactively drive population dynamics. Highly complex habitats, for example, may reduce predation and competition, allowing more individuals living together in a certain area. However, the strength and direction of such interactions can differ strongly and are context dependent. Furthermore, as habitat characteristics are rapidly changing due to anthropogenic impacts, it becomes increasingly important to understand such interactions. Here, we studied the interactive effects of predation and competition on common cockle (Cerastoderma edule) recruitment, growth and survival under different habitat characteristics in the Wadden Sea, one of the world's largest intertidal ecosystems. In a predator-exclosure experiment, we manipulated cockle densities (100 vs. 1000 individuals m-2) and shorebird predation at two sites differing in habitat characteristics, namely at the wake of a blue mussel bed (Mytilus edulis) and at an adjacent sandy site. We found that recruitment was higher in the mussel-modified habitat, most likely due to reduction of hydrodynamic stress. Although bird predation strongly reduced recruit density, the combined effects still yielded more recruitment at the vicinity of the mussel bed compared to the sandy area. Furthermore, we found that high cockle densities combined with high densities of other potential prey (i.e. mussels) at the mussel-modified site, mitigated predation effects for adult cockles. Apart from these positive effects on adults, mussel-modified habitat reduced cockle growth, most likely by reducing hydrodynamics in the wake of the mussel bed and by increasing inter-specific competition for food. Our study experimentally underpins the importance of habitat characteristics, competition and predation in interactively structuring intertidal communities

    Erratum: Impact of an artificial structure on the benthic community composition in the southern North Sea: Assessed by a morphological and molecular approach

    Get PDF
    The following affiliation for Lise Klunder was not included in the earlier version of this article. This has now been added: Marine Evolution and Conservation, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.</p

    Impact of an artificial structure on the benthic community composition in the southern North Sea:Assessed by a morphological and molecular approach

    Get PDF
    Man-made structures in the North Sea are known to act as artificial reefs by providing a habitat for sessile epifauna in a predominantly soft sediment environment. This epifauna is hypothesized to cast a so-called "shadow"over the soft sediment ecosystem by altering the nutrient composition in the overlying water column. In addition, the structure itself could alter currents and thereby influence the deposition and erosion of the sediments in the wake of the platform. This study aims to assess the long-Term effects of a gas platform in the southern North Sea on the surrounding benthic community by both morphological and molecular identification of benthic species. The species composition and a set of abiotic factors of the sediment around a gas platform were assessed along four transects. Differences for the abiotic factors were found in the closer vicinity of the platform in the direction corresponding to the predominant currents. The number of benthic fauna families found in the molecular approach were on average three times higher than for the morphological approach. Both approaches showed that small differences occurred primarily due to changes in sedimentary organic matter content. Differences in species composition were more pronounced between transects rather than between distances from the platform.</p

    A molecular approach to explore the background benthic fauna around a hydrothermal vent and their larvae:Implications for future mining of deep-sea SMS deposits

    Get PDF
    Seafloor massive sulfide (SMS) deposits are commonly found at hydrothermal vents and recently gained the special interest of mining industries. These deposits contain valuable metals and methods are currently developed to mine deep sea SMS deposits. However, excavation of SMS deposits potentially pose a threat to benthic life at the mining site itself, and also in the surrounding environment with plumes of suspended sediment and fine-grained SMS debris created during deep sea mining activities being highlighted as one of the major threats to deep-sea benthic fauna. The benthic communities surrounding the vents are, however, poorly known. As they are often exposed to natural plumes studying such communities could provide valuable information on their resilience toward mining related plumes. The Rainbow hydrothermal vent site at the Mid-Atlantic Ridge is a site characterized by one of the largest continuous natural plumes, which is found persisting over an extensive area. Sediment and water samples were taken both upstream and downstream of the Rainbow hydrothermal vent. Approximately 25 km away from the vent reference sites were samples as well. In addition to detecting the plume itself, concentrations of major and trace-metals in the sediments were used as tracers for long time sustained plume influence. At all sites, we assessed benthic species composition and detected larvae. Metabarcoding methods were used to determine species composition. Benthic species composition in the sediment was shown to differ between all locations and was highly influenced by the plume's fall out. Arthropoda were more dominant closer to the vent whereas Annelida and Nematoda were more dominant at the reference locations. Conservation and restoration of all these communities after a deep sea mining event will be difficult due to the spatial variation of these benthic communities
    • …
    corecore