36 research outputs found

    Neuro fuzzy control of the FES assisted freely swinging leg of paraplegic subjects

    Get PDF
    The authors designed a neuro fuzzy control strategy for control of cyclical leg movements of paraplegic subjects. The cyclical leg movements were specified by three `swing phase objectives', characteristic of natural human gait. The neuro fuzzy controller is a combination of a fuzzy logic controller and a neural network, which makes the controller self tuning and adaptive. Two experiments have been performed, in which the performance of the neuro fuzzy control strategy has been compared with conventional PID control strateg

    A model-based approach to stabilizing crutch supported paraplegic standing by artifical hip joint stiffness

    Get PDF
    The prerequisites for stable crutch supported standing were analyzed in this paper. For this purpose, a biomechanical model of crutch supported paraplegic stance was developed assuming the patient was standing with extended knees. When using crutches during stance, the crutches will put a position constraint on the shoulder, thus reducing the number of degrees of freedom. Additional hip-joint stiffness was applied to stabilize the hip joint and, therefore, to stabilize stance. The required hip-joint stiffness for changing crutch placement and hip-joint offset angle was studied under static and dynamic conditions. Modeling results indicate that, by using additional hip-joint stiffness, stable crutch supported paraplegic standing can be achieved, both under static as well as dynamic situations. The static equilibrium postures and the stability under perturbations were calculated to be dependent on crutch placement and stiffness applied. However, postures in which the hip joint was in extension (C postures) appeared to the most stable postures. Applying at least 60 N /spl middot/ m/rad hip-joint stiffness gave stable equilibrium postures in all cases. Choosing appropriate hip-joint offset angles, the static equilibrium postures changed to more erect postures, without causing instability or excessive arm forces to occur

    On the climate impacts of blue hydrogen production

    Get PDF
    Natural gas based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored, such hydrogen could be a low-carbon energy carrier. However, recent research raises questions about the effective climate impacts of blue hydrogen from a life cycle perspective. Our analysis sheds light on the relevant issues and provides a balanced perspective on the impacts on climate change associated with blue hydrogen. We show that such impacts may indeed vary over large ranges and depend on only a few key parameters: the methane emission rate of the natural gas supply chain, the CO2 removal rate at the hydrogen production plant, and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates combined with natural gas supply featuring low methane emissions does indeed allow for substantial reduction of greenhouse gas emissions compared to both conventional natural gas reforming and direct combustion of natural gas. Under such conditions, blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However, neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal

    Artificial and Natural Sensors in FES-assisted Human Movement Control

    Get PDF
    The availability of small and light micromachined sensors for human use and the demonstration that useful signals can be derived from the natural sensors of the human body have enabled new developments in the area of feedback controlled FES assistance of human movements. This paper presents the need for sensory feedback in FES control systems and gives an overview of available artificial sensors for human use and progress in the derivation and application of signals from natural sensor

    NEURO FUZZY CONTROL OF THE FES ASSISTED FREELY SWINGING LEG OF PARAPLEGIC SUBJECTS

    No full text
    Abstract- We designed a neuro fuzzy control strategy for control of cyclical leg movements of paraplegic subjects. The cyclical leg movements were specified by three ‘swing phase objectives’, characteristic of natural human gait. The neuro fuzzy controller is a combination of a fuzzy logic controller and a neural network, which makes the controller self tuning and adaptive. Two experiments have been performed, in which the performance of the neuro fuzzy control strategy has been compared with a conventional PID control strategy. I
    corecore