104 research outputs found

    An X-Ray Regenerative Amplifier Free-Electron Laser Using Diamond Pinhole MIrrors

    Get PDF
    Free-electron lasers (FELs) have been built ranging in wavelength from long-wavelength oscillators using partial wave guiding through ultraviolet through hard x-ray FELs that are either seeded or start from noise (SASE). Operation in the x-ray spectrum has relied on single-pass SASE due either to the lack of seed lasers or difficulties in the design of x-ray mirrors. However, recent developments in the production of diamond crystal Bragg reflectors point the way to the design of regenerative amplifiers (RAFELs) which are, essentially, low-Q x-ray free-electron laser oscillators (XFELOs) that out-couple a large fraction of the optical power on each pass. A RAFEL using a six-mirror resonator providing out-coupling of 90% or more through a pinhole in the first downstream mirror is proposed and analyzed using the MINERVA simulation code for the undulator interaction and the Optics Propagation Code (OPC) for the resonator. MINERVA/OPC has been used in the past to simulate infrared FEL oscillators. For the present purpose, OPC has been modified to treat Bragg reflection from diamond crystal mirrors. The six-mirror resonator design has been analyzed within the context of the LCLS-II beamline under construction at the Stanford Linear Accelerator Center and using the HXR undulator which is also to be installed on the LCLS-II beamline. Simulations have been run to optimize and characterize the properties of the RAFEL, and indicate that substantial powers are possible at the fundamental (3.05 keV) and third harmonic (9.15 keV).Comment: 9 pages, 14 figure

    Using ultra-short pulses to determine particle size and density distributions

    Get PDF
    We analyze the time dependent response of strongly scattering media (SSM) to ultra-short pulses of light. A random walk technique is used to model the optical scattering of ultra-short pulses of light propagating through media with random shapes and various packing densities. The pulse spreading was found to be strongly dependent on the average particle size, particle size distribution, and the packing fraction. We also show that the intensity as a function of time-delay can be used to analyze the particle size distribution and packing fraction of an optically thick sample independently of the presence of absorption features. Finally, we propose an all new way to measure the shape of ultra-short pulses that have propagated through a SSM.Comment: 15 pages, 29 figures, accepted for publication in Optics Express will update with full reference when it is availabl

    Surface acoustic waves for acousto-optic modulation in buried silicon nitride waveguides

    Get PDF
    We theoretically investigate the use of Rayleigh surface acoustic waves (SAWs) for refractive index modulation in optical waveguides consisting of amorphous dielectrics. Considering low-loss Si3_3N4_4 waveguides with a standard core cross section of 4.4×\times0.03 μ\mum2^2 size, buried 8 μ\mum deep in a SiO2_2 cladding we compare surface acoustic wave generation in various different geometries via a piezo-active, lead zirconate titanate film placed on top of the surface and driven via an interdigitized transducer (IDT). Using numerical solutions of the acoustic and optical wave equations, we determine the strain distribution of the SAW under resonant excitation. From the overlap of the acoustic strain field with the optical mode field we calculate and maximize the attainable amplitude of index modulation in the waveguide. For the example of a near-infrared wavelength of 840 nm, a maximum shift in relative effective refractive index of 0.7x10−3^{-3} was obtained for TE polarized light, using an IDT period of 30 - 35 μ\mum, a film thickness of 2.5 - 3.5 μ\mum, and an IDT voltage of 10 V. For these parameters, the resonant frequency is in the range 70 - 85 MHz. The maximum shift increases to 1.2x10−3^{-3}, with a corresponding resonant frequency of 87 MHz, when the height of the cladding above the core is reduced to 3 μ\mum. The relative index change is about 300-times higher than in previous work based on non-resonant proximity piezo-actuation, and the modulation frequency is about 200-times higher. Exploiting the maximum relative index change of 1.2×\times10−3^{-3} in a low-loss balanced Mach-Zehnder modulator should allow full-contrast modulation in devices as short as 120 μ\mum (half-wave voltage length product = 0.24 Vcm).Comment: 19 pages, 8 figure

    A gain-coefficient switched Alexandrite laser

    Get PDF
    We report on a gain-coefficient switched Alexandrite laser. An electro-optic modulator is used to switch between high and low gain states by making use of the polarization dependent gain of Alexandrite. In gain-coefficient switched mode, the laser produces 85 ns pulses with a pulse energy of 240 mJ at a repetition rate of 5 Hz.Comment: 8 pages, 5 figure

    One-Watt level mid-IR output, singly resonant, continuous-wave optical parametric oscillator pumped by a monolithic diode laser

    Get PDF
    We report more than 1.1 Watt of idler power at 3373 nm in a singly resonant optical parametric oscillator (SRO), directly pumped by a single-frequency monolithic tapered diode laser. The SRO is based on a periodically poled MgO:LiNbO3 crystal in a four mirror cavity and is excited by 8.05 W of 1062 nm radiation. The SRO pump power at threshold is 4 W. The internal slope-efficiency and conversion efficiency reach 89% and 44% respectively. The signal and idler waves are temperature tuned in the range of 1541 to 1600 nm and 3154 to 3415 nm respectively. To the best of our knowledge, this is the highest output obtained for a diode pumped optical parametric oscillator (OPO), and the first time a SRO is directly pumped by a monolithic tapered diode laser

    On-Chip Phase-Shift Induced Control of Supercontinuum Generation in a Dual-Core Si3\mathbf{_{3}}N4\mathbf{_{4}} Waveguide

    Full text link
    We investigate on-chip spectral control of supercontinuum generation, taking advantage of the additional spatial degree of freedom in strongly-coupled dual-core waveguides. Using numerical integration of the multi-mode generalized nonlinear Schr\"odinger equation, we show that, with proper waveguide cross-section design, selective excitation of supermodes can vary the dispersion to its extremes, i.e., all-normal or anomalous dispersion can be selected via phase shifting in a Mach-Zehnder input circuit. The resulting control allows to provide vastly different supercontinuum spectra with the same waveguide circuit
    • …
    corecore