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Abstract

In a Cerenkov FEL (CFEL), the phase velocity of an EM
wave is determined by geometry (i.e., waveguide radius
and inner liner radius) and by material parameters (i.e., the
dielectric constant of the liner). Changes or fluctuations in
any of these parameters induce changes (or fluctuations) in
the phase velocity of the EM wave and thus can degrade
the gain of the CFEL. To investigate the effect of such fluc-
tuations on the gain, a method is developed to describe the
effect of a slowly varying inner liner radius on the EM wave
propagation and consequently on the gain of the CFEL. As
an example, results for a low gain, 800 mA Cerenkov FEL
operating at a frequency of 50 GHz and a maximum beam
voltage of 100 kV are presented.

INTRODUCTION

It is well known that errors in the magnetic field of an
undulator can result in (serious) degradation of the gain
of an undulator based Free-Electron Laser (FEL) [1, 2].
These errors couple to the electron motion and manifest
themselves as fluctuations in the phase of the electron
with respect to the ponderomotive potential. As the gain
is based on longitudinal phase-bunching of the electrons,
these phase fluctuations will in general lower the gain of the
device. The effect of the undulator errors is wavelength de-
pendent and this leads to increasingly stringent tolerances
on the undulator to avoid significant reduction in the gain
at shorter wavelength [2].

In a Cerenkov FEL (CFEL), an electron beam interacts
with an electromagnetic (EM) field as they co-propagate
through an axial-symmetric, lined cylindrical waveguide.
The longitudinal wavenumber of the EM wave is deter-
mined by geometry (waveguide radius and inner liner ra-
dius) and by material parameters (dielectric constant of the
liner). Coherent amplification of EM waves takes place
when the phase velocity of the waves approximately equals
the electron beam velocity and the EM-wave has a longi-
tudinal electric field component. Therefore, variations or
fluctuations in the dielectric constant or in the geometry of
the liner result in changes of the longitudinal wavenumber
and consequently in the relative phase between the EM-
wave and the co-propagating electrons. As the EM wave is
the ponderomotive potential in a CFEL, it can be expected
that these fluctuations will influence the gain of a CFEL as
well. However, here the errors in the liner are coupled to
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the radiation field whereas in the undulator based FEL the
errors of the undulator are coupled to the electron motion.

To our knowledge, we are the first to investigate liner
induced phase fluctuation in the ponderomotive potential
and their effect on the gain of a Cerenkov FEL. This infor-
mation is especially important for the design of low gain
Cerenkov FEL devices (see e.g., [4]) as liners made from
commercial tubes have variations in the inner radius rang-
ing from a few hundred microns down to a few tens of mi-
crons (e.g., for precision tubes). Low gain devices are usu-
ally designed as an oscillator and have a low net-gain per
pass such that any degradation of the gain seriously effects
the performance of the device.

The organization of the remainder of this work is as fol-
lows. We will consider an axial-symmetric lined waveg-
uide for which the inner radius of the liner rd(z) varies
slowly with axial distance z and is otherwise constant. We
first discuss, in the limit of no electron beam, the influ-
ence of the liner fluctuations on the propagation of an EM
wave in such a waveguide. Then we will use the SVAP ap-
proximation to derive the fundamental FEL equations from
Maxwell’s equations. We continue with applying the set of
equations to a low gain CFEL that uses an 800 mA electron
beam with a maximum energy of 100 kV to generate more
than 1 kW in continuous wave mode, to study the effect of
liner irregularities on the performance of the device. By ap-
plying a linear change of rd with distance z the formulation
can also be used to model a tapered version of the CFEL.

WAVE PROPAGATION IN AN
IRREGULAR LINED WAVEGUIDE

Consider an axial-symmetric waveguide lined with a di-
electric that has a varying inner radius rd(z) and is other-
wise constant. Let rg be the radius of the waveguide, which
is also equal to the outer radius of the liner. As for the case
of constant rd, it is sufficient to solve Maxwell’s equations
for the longitudinal field components alone, since they
completely specify the electromagnetic wave. As �∇ε = 0
within the vacuum and dielectric region separately, and as-
suming a eiωt dependence for the fields, the wave equation
can be written as

(
�∇2
⊥ +

∂2

∂z2
+

ω2

c2

){
Ez(r, z)
Bz(r, z)

}
= 0 (1)

for each region. Here c = c0 in the vacuum region,
c = c0√

εr
in the liner region, and c0 is the speed of light

in vacuum. As observed above, the longitudinal wavenum-
ber is a function of z due to the longitudinal variation of
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rd(z). Assuming that the longitudinal wavenumber, k(z)
will be slowly varying with distance z, we will follow the
WKB approximation [3] and make the ansatz that the fields
have a longitudinal variation according to

Ez(r, z) =
g(r)√
k(z)

exp
(

i

∫ z

0

k(z′)dz′
)

. (2)

In agreement with the WKB approximation, we neglect the
second order derivative in k(z). Substituting (2) into the
wave equation (1) gives

(
�∇2
⊥ − k2(z) +

ω2

c2

)
g(r) = 0, (3)

which is Bessel’s equation. However, eq. 3 still has an im-
plicit dependence on the distance z through the longitudi-
nal wavenumber k(z) and this would in general violate the
assumption that g(r) is a function of r alone. However, we
assume that the variations in k(z) are slow and small, i.e.,
∆k(z) = k(z)−k0 << k(z), where k0 is the wavenumber
corresponding to a constant rd equal to the average liner ra-
dius rd0. Thus, we find, in first approximation, kz ≈ k0 and
the transverse profile of the EM-wave remains unaffected
by the slowly varying inner radius. On the other hand, a
small value of ∆k(z) may give an appreciable value in the
phase factor exp

(∫ z

0
(k0 + ∆k(z′))dz′

)
. Thus ∆k(z) will

be retained in the phase factor. The phase α(z, t) of the
electromagnetic wave is given by

α(z, t) =
∫ z

0

k(z′)dz′ − ωt, (4)

where the slowly varying longitudinal wavenumber is given
by

k(z) = k0+
∫ z

0

∂k

∂z′
dz′ ≈ k0+

∂k

∂rd

∣∣∣∣
rd0

∫ z

0

∂rd

∂z′
dz′. (5)

It is assumed here that the inner radius of the liner is equal
to the mean radius at z = 0. To summarize, the transverse
mode pattern is not influenced by the slowly varying inner
boundary of the liner which only influences the phase of
the propagating EM-wave through kz . Variations in rd(z)
are considered slow if they are slow compared to a radi-
ation wavelength, because the SVAP approximation, used
to derive the dynamical FEL equations, includes an aver-
age over one ponderomotive wavelength (i.e., a radiation
wavelength).

To find the fields, within these approximations, eq. (3)
is solved and the usual boundary conditions are applied.
The solution consists of axial-symmetric, propagating EM-
waves that can be divided into two classes. These are
the well known TE0n and TM0n modes with respectively
Ez = 0 and Bz = 0. Only modes with Ez �= 0 are of
interest, as these modes are responsible for the bunching
of the electrons in a Cerenkov FEL. Limiting ourselves to
the interesting case of a phase velocity less then c0, the ex-
pressions for the fields, used to derive the dynamical CFEL

equations, are as follows. The transverse wavenumbers κn

and κ′n for the vacuum respectively liner region are given
by

κn =

√
k2
0n −

ω2

c2
0

κ′n =

√
εr

ω2

c2
0

− k2
0n, (6)

whereas the components for the TM0n are given by

�E0n(�r, t) = ω

(
iI1(κnr)êr − κn

k0n
I0(κnr)êz

)
A0n(z, t)

(7)
and

�B0n(�r, t) = ik0n

(
1− κ2

n

k2
0n

)
I1(κnr)A0n(z, t)êθ (8)

in the vacuum region and by

�E0n(�r, t) =

= ω

(
i
κn

κ′n
[anJ1(κ′nr) + bnY1(κ′nr)] A0n(z, t)êr−

− κn

k0n
[anJ0(κ′nr) + bnY0(κ′nr)]A0n(z, t)êz

)
(9)

and

�B0n(�r, t) =

= ik0n

(
1 +

κ′2n
k2
0n

)
κn

κ′n
[anJ1(κ′nr)+

+bnY1(κ′nr)] A0n(z, t)êθ (10)

in the liner region. In these equations,

A0n(z, t) = a0n
1√

kn(z)
eıαn(z,t). (11)

DYNAMICAL EQUATIONS FOR CFEL

In this section a non-linear formulation is given for a
Cerenkov FEL with an irregular liner. As usual, we start
with expressing the total field as a sum over the TM0n

waves (eqs. (7) to (10)) found for the irregular, axially sym-
metric, lined waveguide with no electron beam present [5].
The amplitude of each mode is z−dependent such that the
wave can be amplified by the electron beam. This total field
is substituted into Maxwell’s equations with the electron
beam as the driving term for the field. Using the orthog-
onality property of the modes, a single mode amplitude is
filtered out from Maxwell’s equation by multiplying it with
the transverse profile of that mode and integrate Maxwell’s
equation over the cross-section of the waveguide. Then the
slowly varying amplitude and phase (SVAP) approxima-
tion is applied to obtain the final dynamical equation that
describes the amplification of the mode amplitude. The set
of equations is closed by complementing it with Lorentz’s
equation that describes the motion of the electrons within
the beam under influence of the electromagnetic fields and
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Figure 1: Calculated power as a function of the standard
deviation of the liner irregularities. See the text for more
details. The lines are for guidance only.

the axial magnetic guide field present. As the derivation is
straightforward and very similar to [5] we only present the
final result for the mode amplitude,

2
√

kn(z)(1− κ2
n

k2
0n

)
∂a′0n

∂z
=

= −4
ω2

p

c2
0

βz0

Anr2
d0

∫ rd0

0

drr

[
iI1(κnr)〈 βr

|βz|e
iαn〉+

+
κn

k0n
I0(κnr)〈e−iαn〉

]
(12)

where An is a normalization constant, ωp is the plasma fre-
quency and a′0n(z) = e

mca0n(z) with a0n(z) the complex
z-dependent amplitude of (11). Here, 〈. . .〉 is an average
over all electrons within one ponderomotive wavelength,
i.e., one radiation wavelength. Note that with the electron
beam present, the phase of the TM0n mode is not solely
given by α0n(z, t) as the dynamical CFEL equation (eq.
(12)) also drives the phase of the complex amplitude a′0n.
Therefore the total relative phase of an electron with re-
spect to the ponderomotive potential is given by the sum of
these two phases.

LINER IRREGULARITIES

The above given formulation is used to investigate the
effect of irregularities in the inner radius of an otherwise
constant liner used in a low gain CFEL operating at a nom-
inal frequency of 50 GHz [4]. The CFEL uses a 800 mA
electron beam with a radius rb of 1mm and a maximum
beam voltage Vb of 100 kV to generate an output power in
excess of 1 kW. Using a liner with the following param-
eters, εr=5.8, rd0=1.5 mm, length L=0.7 m and thickness
dε=1.3 mm, the CFEL requires a beam voltage Vb of 75.1
kV to obtain maximum output power at 50 GHz. The liner

fluctuations are generated using a uniform random distribu-
tion between −δrd and δrd that is filtered with a low-pass
spatial filter. The filter has a cut-off distance of 0.1 m and
removes fast fluctuations. To estimate the influence on the
maximum power, 20 different realizations of the fluctua-
tions are generated for each maximum amplitude δrd. For
each realization the maximum power Pmax or, if not satu-
rated, the power Pend at the end of the liner, and the stan-
dard deviation σr of the fluctuations are calculated. The av-
erage of these values are plotted in fig. 1 for a liner length
of 70 cm. The error bar in Pmax represent the average stan-
dard deviation of Pmax (Pend has a similar standard devia-
tion). With no fluctuations, the laser has a saturated power
of Pmax = 1.9 kW at a distance zsat = 67 ± 1 cm. From
the simulations it follows that both Pmax and zsat decrease
with increasing σr and at the same time the spread in both
increases, i.e., zsat = 55± 8 cm at σr = 40 µm. It follows
from fig. 1 that a rms fluctuation of approx. 40 µm is al-
ready sufficient to lower the maximum power, on average,
by a factor of 2. On the other hand, fig. 1 also shows that
a particular realization of the liner fluctuations can also en-
hance the saturated power and this will be investigated in
the next section.

TAPERED LINER

In the previous section we considered a dielectric liner
with an inner radius that fluctuates slowly but randomly
with distance z and found that even small fluctuations can
seriously degrade the gain of a CFEL. If, on the other hand,
we were to apply a linear taper starting at some distance,
we expect to enhance the gain and obtain a higher output
power. The latter is the result of keeping the bunch away
from reaching the bottom of the ponderomotive potential
well by changing the phase velocity of the EM wave. As
the average electron velocity decreases, the phase velocity
of the EM wave must be reduced as well to avoid satura-
tion. Because dk0n/drd0 is negative, one has to reduce the
inner liner radius to avoid trapping. This will reduce the
gap between the electron beam and liner and will thus have
limited applicability. However, it is interesting to find out
if a negative taper on rd(z) improves the performance and
by how much.

We consider the same CFEL as in the previous section.
The growth of the power as a function of z is shown in fig.
2 where the length of the liner has been extended to L = 3
m to allow for some distance for the taper. As the CFEL
has initially a gap of 0.5 mm between the electron beam
and the liner, the length of the taper is limited and the max-
imum liner length depends on the slope of the taper. Fig. 2
shows the power as a function of z for different, negative,
slopes of a taper that starts at z = 60 cm. If the slope is
not large enough, the laser will not reach saturation within
a liner length of 3 m. The output of the laser increases with
increasing slope of the taper up to the point where the liner
diameter is such that the gap with the electron beam is re-
duced to zero and electrons start to hit the liner before the
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Figure 2: Calculated power as a function of distance z for
different slopes of the taper. The taper starts at z=0.6 m.

end is reached. At this point the output power is close to 10
kW (drd/dz = -0.229 mm/m). A still larger slope results in
a shorter distance to reach the point of zero gap and a grad-
ual decrease of the maximum power; for a slope of -0.417
mm/m the maximum power is already reduced to 8.7 kW
at z = 1.95 m. For a slope of -0.188 mm/m we extended the
liner length and found a maximum power of 10.4 kW at a
distance of 3.65 m where, again, the gap was reduced to
zero. It should be pointed out that although the decrease in
gap as a result of the negative taper increases the coupling
strength between electrons and EM wave, it is the change
in phase velocity that prevents the laser from reaching sat-
uration. To conclude, for this particular CFEL, it is found
that a negative taper on rd0 increases the maximum attain-
able power with a factor of 5 before the gap is reduced to
zero. Note that at that point the laser was not saturated.

Therefore, further improvements are to be expected by
using different methods of tapering that avoid reducing the
gap. These methods are changing the dielectric constant or
the outer waveguide radius. This is currently under study.

CONCLUSIONS

We have demonstrated that, in first approximation, the
transverse mode profile of a CFEL is not influenced by a
slowly varying inner radius of the liner. However the liner
does effect the phase velocity of the propagating wave. We
derived the dynamical CFEL equation and applied it to in-
vestigate the influence of liner fluctuations and a taper of
the inner liner radius on the performance of the CFEL. It
was found that an rms fluctuation that is approximately 3
% of rd0 is already sufficient to decrease the maximum
power by a factor of 2, at least for the configuration inves-
tigated. Note that this rms fluctuation is comparable to the
manufacturing accuracy of commercially available (quartz)
tubes. By applying a negative taper to rd0 the maximum
power can be increased by a factor of 5 before the gap be-

tween electron beam and liner becomes zero. At this point
the laser is not yet saturated, so other methods of tapering
may still further improve the performance.
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