6 research outputs found

    Dual Targeting to Overcome Current Challenges in Multiple Myeloma CAR T-Cell Treatment

    No full text
    In the era of highly promising novel targeted-immunotherapy strategies for multiple myeloma (MM), the first series of clinical trials with CAR T-cells targeting the plasma cell-specific B-cell maturation antigen (BCMA) have shown excellent response rates. In the long-term, however, MM appears to escape the therapy likely due to initial low and heterogeneous expression or downregulation of BCMA expression. Several other molecules targeted by CAR T-cells in MM are expressed at high levels on MM cells, but many of these attractive targets are also expressed on various, sometimes vital non-malignant cells, posing major risks for on-target, off-tumor side effects. CAR T-cell therapy for MM therefore faces two urgent challenges: (i) improving the efficacy of BCMA CAR T-cells and (ii) establishing a MM-selectivity even when CAR T-cells are directed against not entirely MM-specific target antigens. In this review, we will outline the current attempts to tackle these challenges, with a specific focus on how dual CAR targeting might be applied to tackle both issues

    Bone marrow mesenchymal stromal cells can render multiple myeloma cells resistant to cytotoxic machinery of CAR T cells through inhibition of apoptosis

    No full text
    Purpose: The microenvironment of multiple myeloma (MM) can critically impair therapy outcome, including immunotherapies. In this context, we have earlier demonstrated that bone marrow mesenchymal stromal cells (BMMSC) protect MM cells against the lytic machinery of MM-reactive cytotoxic T cells (CTL) and daratumumab-redirected natural killer (NK) cells through the upregulation of antiapoptotic proteins Survivin and Mcl-1 in MM cells. Here, we investigated the significance of this mode of immune escape on T cells engineered to express chimeric antigen receptors (CAR T cells). Experimental Design: We tested the cytolytic ability of a panel of 10 BCMA-, CD38-, and CD138-specific CAR T cells with different affinities against a model MM cell line and against patient-derived MM cells in the presence versus absence of BMMSCs. Results: Although BMMSCs hardly protected MM cells from lysis by high-affinity, strongly lytic BCMA- and CD38-CAR T cells, they significantly protected against lower affinity, moderately lytic BCMA-, CD38-, and CD138-specific CAR T cells in a cell–cell contact-dependent manner. Overall, there was a remarkable inverse correlation between the protective ability of BMMSCs and the lytic activity of all CAR T cells, which was dependent on CAR affinity and type of costimulation. Furthermore, BMMSC-mediated resistance against CAR T cells was effectively modulated by FL118, an inhibitor of antiapoptotic proteins Survivin, Mcl-1, and XIAP. Conclusions: These results extend our findings on the negative impact of the microenvironment against immunotherapies and suggest that outcome of CAR T cell or conventional CTL therapies could benefit from inhibition of antiapoptotic proteins upregulated in MM cells through BMMSC interactions

    CD38-specific chimeric antigen receptor expressing natural killer KHYG-1 cells: A proof of concept for an "Off the Shelf" therapy for multiple myeloma

    No full text
    Chimeric antigen receptor (CAR) T cells are highly successful in the treatment of hematologic malignancies. We recently generated affinity-optimized CD38CAR T cells, which effectively eliminate multiple myeloma (MM) cells with little or no toxicities against nonmalignant hematopoietic cells. The lack of universal donors and long manufacturing times however limit the broad application of CAR T cell therapies. Natural killer (NK) cells generated from third party individuals may represent a viable source of "off the shelf"CAR-based products, as they are not associated with graft-versus-host disease unlike allogeneic T cells. We therefore explored the preclinical anti-MM efficacy and potential toxicity of the CD38CAR NK concept by expressing affinity-optimized CD38CARs in KHYG-1 cells, an immortal NK cell line with excellent expansion properties. KHYG-1 cells retrovirally transduced with the affinity-optimized CD38CARs expanded vigorously and mediated effective CD38-dependent cytotoxicity towards CD38high MM cell lines as well as primary MM cells ex vivo. Importantly, the intermediate affinity CD38CAR transduced KHYG-1 cells spared CD38neg or CD38int nonmalignant hematopoietic cells, indicating an optimal tumor nontumor discrimination. Irradiated, short living CD38CAR KHYG-1 cells also showed significant anti-MM effects in a xenograft model with a humanized bone marrow-like niche. Finally, CD38CAR KHYG-1 cells effectively eliminated primary MM cells derived from patients who are refractory to CD38 antibody daratumumab. Taken together, the results of this proof-of-principle study demonstrate the potential value of engineering affinity-optimized CD38CARs in NK cells to establish effective anti-MM effects, with an excellent safety profile, even in patients who failed to response to most advanced registered myeloma therapies, such as daratumumab
    corecore