35 research outputs found

    Expression of interferon-γ in human adrenal gland and kidney tumours

    Get PDF
    It is known that interferon-γ (IFN-γ) is produced by activated T and NK lymphoid cells, mononuclear cells, and macrophage and dendritic cells. Our previous studies have shown that IFN-γ-like immunoreactivity also appears in human adrenal cortical tumour and phaeochromocytoma. To investigate whether human tumour cells can produce IFN-γ, we examined 429 biopsy specimens of 30 kinds of tumour and tumour-surrounding tissues in adrenal glands and in kidneys by using immunohistochemistry and in situ hybridisation. IFN-γ immunoactivity was shown in 34.3% of the adrenal cortical adenomas, 50% of the adrenal cortical carcinomas, 26.7% of the phaeochromocytomas, 26.7% of the clear cell renal cell carcinomas (RCCs), 22% of the adrenal cortexes and 40% of medullas adjacent to tumours. The positive samples and expression areas were well overlapped between the IFN-γ mRNA and the immunohistochemistry staining. Western blot analysis has further confirmed the immunohistochemistry results by showing a distinct IFN-γ band corresponding to 17.4 kDa in tissue extracts from adrenal cortical adenoma, phaeochromocytoma and clear cell RCCs. These results indicate that IFN-γ is produced by some types of tumour cells, suggesting it may play a dual role in the development of these tumours

    Prophylactic ciprofloxacin treatment prevented high mortality, and modified systemic and intestinal immune function in tumour-bearing rats receiving dose-intensive CPT-11 chemotherapy

    Get PDF
    Infectious complications are a major cause of morbidity and mortality from dose-intensive cancer chemotherapy. In spite of the importance of intestinal bacteria translocation in these infections, information about the effect of high-dose chemotherapy on gut mucosal immunity is minimal. We studied prophylactic ciprofloxacin (Cipro) treatment on irinotecan (CPT-11) toxicity and host immunity in rats bearing Ward colon tumour. Cipro abolished chemotherapy-related mortality, which was 45% in animals that were not treated with Cipro. Although Cipro reduced body weight loss and muscle wasting, it was unable to prevent severe late-onset diarrhoea. Seven days after CPT-11, splenocytes were unable to proliferate (stimulation index=0.10±0.02) and produce proliferative and inflammatory cytokines (i.e., Interleukin (IL)-2, interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α) IL-1β, IL-6) on mitogen stimulation in vitro (P<0.05 vs controls), whereas mesenteric lymph node (MLN) cells showed a hyper-proliferative response and a hyper-production of pro-inflammatory cytokines on mitogen stimulation. This suggests compartmentalised effects by CPT-11 chemotherapy on systemic and intestinal immunity. Cipro normalised the hyper-responsiveness of MLN cells, and in the spleen, it partially restored the proliferative response and normalised depressed production of IL-1β and IL-6. Taken together, Cipro prevented infectious challenges associated with immune hypo-responsiveness in systemic immune compartments, and it may also alleviate excessive pro-inflammatory responses mediating local gut injury

    Interferon-beta prevents interleukin-8-induced neutrophil infiltration and attenuates blood-brain barrier disruption

    No full text
    Inflammation can contribute to brain injury, such as that resulting from ischemia or trauma. The authors have previously shown that the cytokine interferon-beta (IFN-) affords protection against ischemic brain injury, which was associated with a diminished infiltration of neutrophils and a reduction in blood–brain barrier (BBB) disruption. The goal of the current study was to directly assess the effects of IFN- on neutrophil infiltration, with the use of an in vivo assay of neutrophil infiltration with relevance to ischemic brain injury. Intrastriatal injection of recombinant rat cytokine–induced neutrophil chemoattractant-1, a member of the interleukin-8 family (1 g in 1 L), triggered massive infiltration of neutrophils and extensive BBB disruption 6 hours later, as measured using immunofluorescence microscopy and magnetic resonance imaging in the rat, respectively. Depleting the animals of neutrophils before interleukin-8 injection prevented BBB disruption. Treatment with IFN- (5 106 U/kg) almost completely prevented neutrophil infiltration and attenuated BBB damage. Gelatinase zymography showed matrix metalloproteinase-9 expression in the ipsilateral striatum after interleukin-8 injection. Both neutrophil depletion and IFN- treatment downregulated matrix metalloproteinase-9. IFN- has already been approved for human use as a treatment for the chronic inflammatory disorder multiple sclerosis. The potential value of IFN- as a treatment that can attenuate acute brain inflammation is considered

    Complexities of applying nasal tolerance induction as a therapy for ongoing relapsing experimental autoimmune encephalomyelitis (EAE) in DA rats

    No full text
    EAE is an autoimmune disease of the central nervous system (CNS) that serves as an experimental model for the human inflammatory demyelinating disease multiple sclerosis (MS). Antigen-based immunotherapy including soluble antigen administration via feeding has been shown to be successful in treating EAE in rodents. In the present study, we explore nasal administration of small amounts of myelin basic protein (MBP) as a potential means of treatment of protracted, relapsing EAE (PR-EAE) in a novel DA rat system. We found that nasal administration of MBP prevented EAE induced with whole spinal cord homogenate + Freund's incomplete adjuvant (FIA), and strongly down-regulated levels of MBP-reactive interferon-gamma (IFN-γ)-secreting Th1-like cells. However, in rats with ongoing PR-EAE receiving the same regimen of MBP, a trend of aggravated disease was recorded, in conjunction with augmented levels of MBP-reactive IFN-γ-secreting Th1-like splenocytes during the acute phase of EAE. These data have implications for the clinical application of nasal tolerance to autoimmune diseases
    corecore