2 research outputs found

    Effects of the energy transition on environmental impacts of cobalt supply: A prospective life cycle assessment study on future supply of cobalt

    Get PDF
    Cobalt is considered a key metal in the energy transition, and demand is expected to increase substantially by 2050. This demand is for an important part because of cobalt use in (electric vehicle) batteries. This study investigated the environmental impacts of the production of cobalt and how these could change in the future. We modeled possible future developments in the cobalt supply chain using four variables: (v1) ore grade, (v2) primary market shares, (v3) secondary market shares, and (v4) energy transition. These variables are driven by two metal-demand scenarios, which we derived from scenarios from the shared socioeconomic pathways, a “business as usual” (BAU) and a “sustainable development” (SD) scenario. We estimated future environmental impacts of cobalt supply by 2050 under these two scenarios using prospective life cycle assessment. We found that the environmental impacts of cobalt production could likely increase and are strongly dependent on the recycling market share and the overall energy transition. The results showed that under the BAU scenario, climate change impacts per unit of cobalt production could increase by 9% by 2050 compared to 2010, while they decreased by 28% under the SD scenario. This comes at a trade-off to other impacts like human toxicity, which could strongly increase in the SD scenario (112% increase) compared to the BAU scenario (71% increase). Furthermore, we found that the energy transition could offset most of the increase of climate change impacts induced by a near doubling in cobalt demand in 2050 between the two scenarios.Team Yongxiang Yan

    Life cycle assessment of material footprint in recycling: A case of concrete recycling

    Get PDF
    Meeting the current demand for concrete requires not only mining tons of gravel and sand, but also burning large amounts of fossil fuel resources in cement kilning. Consequently, concrete recycling is crucial to achieving a material-efficient society, especially with the application of various categories of concrete and the goal of phasing out fossil fuels. A comparative life cycle assessment (LCA) is used to assess the engineering material footprint (EMF) and the fossil fuel material footprint (FMF) in closed-loop recycling of three types of concrete: siliceous concrete, limestone concrete, and lightweight aggregate concrete. This study aims to investigate the impact of (i) concrete categories, (ii) methods to model recycling, and (iii) using renewable energy sources on the material footprint in concrete recycling. The results highlight that the concrete recycling system can reduce 99% of the EMF and 66–93% of the FMF compared with the baseline system, in which concrete waste is landfilled. All three recycling modeling approaches indicate that concrete recycling can considerably reduce EMF and FMF compared with the baseline system, primarily resulting from the displacement of virgin raw materials. Using alternative diesels is more sensitive than adopting renewable electricity in reduction of the FMF in concrete recycling. Replacing diesel with electrolysis- and coal-based synthetic diesel for concrete recycling could even increase the FMF, while using biodiesel made from rapeseed and wood-based synthetic diesel can reduce 47–51% and 84–89% of the FMF, respectively, compared to the virgin diesel-based recycling system. Finally, we discussed the multifunctionality and rebound effects of recycling, and double-counting risk in material and energy accounting.Resources & Recyclin
    corecore