4,557 research outputs found

    The photoelectron spectra of the diazanaphthalenes

    Get PDF
    The high-resolution He 584 Å photoelectron spectra of ten diazanaphthalenes are presented. The ordering of the π orbitals and the nitrogen “lone-pair” orbitals is discussed. Several semi-empirical quantum-chemical calculation methods have been screened against the experimental evidence

    Perfluoro effect in the photoelectron spectra of quinoline and isoquinoline

    Get PDF
    The high-resolution He 584Aophotoelectron spectra of heptafluoroquinoline and heptafluoroisoquinoline are compared with those of the parent compounds. Shifts in π ionisation potentials, due to the fluorine substitution, can be described with an inductive and a combined inductive-conjugative Hu¨ckel model

    Photoelectron spectra of fluorine substituted diazanaphthalenes: “Even cases”

    Get PDF
    The high resolution He 584 Ă… photoelectron spectra of three diazanaphthalenes and some of their fluorine derivatives are presented. The qualitative model that is used frequently in the discussion of lone-pair level splittings is examined

    Heat transfer in a recirculation zone at steady-state and oscillating conditions - the back facing step test case

    Get PDF
    Steady state and transient heat transfer is a very important aspect of any combustion process. To properly simulate gas to wall heat transfer in a turbulent flow, an accurate prediction of the flow and the thermal boundary layer is required. A typical gas turbine combustion chamber flow presents similarities with the academic backward facing step case, especially in the near wall regions where the heat transfer phenomena take place. For this reason, due to its simple geometry and the availability of well documented experiments, the backward facing step with wall heat transfer represents an interesting validation case. Results of steady-state and transient calculations with the use of various turbulence models are compared here with available experimental data

    An Alternate Method for Fourier Transform Infrared (FTIR) Spectroscopic Determination of Soil Nitrate Using Derivative Analysis and Sample Treatments

    Get PDF
    This study aimed at examining effective sample treatments and spectral processing for an alternate method of soil nitrate determination using the attenuated total reflectance (ATR) of Fourier transform infrared (FTIR) spectroscopy. Prior to FTIR measurements, soil samples were prepared as paste to enhance adhesion between the ATR crystal and sample. The similar nitrate peak heights of soil pastes and their supernatants indicated that the nitrate in the liquid portion of the soil paste mainly responded to the FTIR signal. Using a 0.01-M CaSO4 solution for the soil paste, which has no interference bands in the characteristic spectra of the analyte, increased the concentration of the nitrates to be measured. Second-order derivatives were used in the prediction model to minimize the interference effects and enhance the performance. The second-order derivative spectra contained a unique nitrate peak in a range of 1,400-1,200 cm(-1) without interference of carbonate. A partial least square regression model using second-order derivative spectra performed well (R (2) = 0.995, root mean square error (RMSE) = 23.5, ratio of prediction to deviation (RPD) = 13.8) on laboratory samples. Prediction results were also good for a test set of agricultural field soils with a CaCO3 concentration of 6% to 8% (R (2) = 0.97, RMSE = 18.6, RPD = 3.5). Application of the prediction model based on soil paste samples to nitrate stock solution resulted in an increased RMSE (62.3); however, validation measures were still satisfactory (R (2) = 0.99, RPD = 3.0

    Hysteretic clustering in granular gas

    Get PDF
    Granular material is vibro-fluidized in N=2 and N=3 connected compartments, respectively. For sufficiently strong shaking the granular gas is equi-partitioned, but if the shaking intensity is lowered, the gas clusters in one compartment. The phase transition towards the clustered state is of 2nd order for N=2 and of 1st order for N=3. In particular, the latter is hysteretic. The experimental findings are accounted for within a dynamical model that exactly has the above properties

    Bibliografy fan Jehannes Ytsma (1957-2005)

    Get PDF

    Not a drop to drink in the Aral Sea.

    Get PDF
    • …
    corecore