861 research outputs found

    Promoting Floriculture Using VAT Regulation

    Get PDF
    In twelve EU countries, the lower VAT-tariff is applied to flowers and plants in order to promote the production and employment in floriculture. This paper assesses whether the VAT-regulation for flowers and plants achieves the goals set – promoting consumer demand and production and employment in the ornamental supply chain - (effectiveness) and at what cost (efficiency). The empirical results show that the VAT-regulation for floriculture is effective, but not very efficient.Flowers and plants, Economic policy evaluation, Value Added Tax (VAT), Marketing,

    Coronary calcium scores on dual-source photon-counting computed tomography:an adapted Agatston methodology aimed at radiation dose reduction

    Get PDF
    OBJECTIVES: The aim of this study was to determine mono-energetic (monoE) level-specific photon-counting CT (PCCT) Agatston thresholds, to yield monoE level independent Agatston scores validated with a dynamic cardiac phantom. Also, we examined the potential of dose reduction for PCCT coronary artery calcium (CAC) studies, when reconstructed at low monoE levels. METHODS: Theoretical CAC monoE thresholds were calculated with data from the National Institute of Standards and Technology (NIST) database. Artificial CAC with three densities were moved in an anthropomorphic thorax phantom at 0 and 60-75 bpm, and scanned at full and 50% dose on a first-generation dual-source PCCT. For all densities, Agatston scores and maximum CT numbers were determined. Agatston scores were compared with the reference at full dose and 70 keV monoE level; deviations (95% confidence interval) < 10% were deemed to be clinically not-relevant. RESULTS: Averaged over all monoE levels, measured CT numbers deviated from theoretical CT numbers by 6%, 13%, and - 4% for low-, medium-, and high-density CAC, respectively. At 50% reduced dose and 60-75 bpm, Agatston score deviations were non-relevant for 60 to 100 keV and 60 to 120 keV for medium- and high-density CAC, respectively. CONCLUSION: MonoE level-specific Agatston score thresholds resulted in similar scores as in standard reconstructions at 70 keV. PCCT allows for a potential dose reduction of 50% for CAC scoring using low monoE reconstructions for medium- and high-density CAC. KEY POINTS: • Mono-energy level-specific Agatston thresholds allow for reproducible coronary artery calcium quantification on mono-energetic images. • Increased calcium contrast-to-noise ratio at reduced mono-energy levels allows for coronary artery calcium quantification at 50% reduced radiation dose for medium- and high-density calcifications

    Reproducibility of coronary artery calcium quantification on dual-source CT and dual-source photon-counting CT:a dynamic phantom study

    Get PDF
    To systematically compare coronary artery calcium (CAC) quantification between conventional computed tomography (CT) and photon-counting CT (PCCT) at different virtual monoenergetic (monoE) levels for different heart rates. A dynamic (heart rates of 0,  75 bpm) anthropomorphic phantom with three calcification densities was scanned using routine clinical CAC protocols with CT and PCCT. In addition to the standard clinical protocol of 70 keV, PCCT images were reconstructed at monoE levels of 72, 74, and 76 keV. CAC was quantified using Agatston, volume, and mass scores. Agatston scores 95% confidence intervals (CI) were calculated and compared between PCCT and CT. Volume and mass scores were compared with physical quantities. For all CAC densities, routine clinical protocol Agatston scores of static CAC were higher for PCCT compared to CT. At < 60 bpm, Agatston scores at 74 and 76 keV reconstructions were reproducible (overlapping CI) for PCCT and CT. Increased heart rates yielded different Agatston scores for PCCT in comparison with CT, for all monoE levels. Low density CAC volume scores showed the largest deviation from physical volume, with mean deviations of 59% and 77% for CT and PCCT, respectively. Overall, mass scores underestimated physical mass by 10%, 38%, and 59% for low, medium, and high density CAC, respectively. PCCT allows for reproducible Agatston scores for dynamic CAC (< 60 bpm) when reconstructed at monoE levels of 74 or 76 keV, regardless of CAC density. Deviations from physical volume and mass were, in general, large for both CT and PCCT

    Dose Reduction in Coronary Artery Calcium Scoring Using Mono-Energetic Images from Reduced Tube Voltage Dual-Source Photon-Counting CT Data:A Dynamic Phantom Study

    Get PDF
    In order to assess coronary artery calcium (CAC) quantification reproducibility for photon-counting computed tomography (PCCT) at reduced tube potential, an anthropomorphic thorax phantom with low-, medium-, and high-density CAC inserts was scanned with PCCT (NAEOTOM Alpha, Siemens Healthineers) at two heart rates: 0 and 60–75 beats per minute (bpm). Five imaging protocols were used: 120 kVp standard dose (IQ level 16, reference), 90 kVp at standard (IQ level 16), 75% and 45% dose and tin-filtered 100 kVp at standard dose (IQ level 16). Each scan was repeated five times. Images were reconstructed using monoE reconstruction at 70 keV. For each heart rate, CAC values, quantified as Agatston scores, were compared with the reference, whereby deviations >10% were deemed clinically relevant. Reference protocol radiation dose (as volumetric CT dose index) was 4.06 mGy. Radiation dose was reduced by 27%, 44%, 67%, and 46% for the 90 kVp standard dose, 90 kVp 75% dose, 90 kVp 45% dose, and Sn100 standard dose protocol, respectively. For the low-density CAC, all reduced tube current protocols resulted in clinically relevant differences with the reference. For the medium- and high-density CAC, the implemented 90 kVp protocols and heart rates revealed no clinically relevant differences in Agatston score based on 95% confidence intervals. In conclusion, PCCT allows for reproducible Agatston scores at a reduced tube voltage of 90 kVp with radiation dose reductions up to 67% for medium- and high-density CAC

    Prediction of final infarct volume from native CT perfusion and treatment parameters using deep learning

    Get PDF
    CT Perfusion (CTP) imaging has gained importance in the diagnosis of acute stroke. Conventional perfusion analysis performs a deconvolution of the measurements and thresholds the perfusion parameters to determine the tissue status. We pursue a data-driven and deconvolution-free approach, where a deep neural network learns to predict the final infarct volume directly from the native CTP images and metadata such as the time parameters and treatment. This would allow clinicians to simulate various treatments and gain insight into predicted tissue status over time. We demonstrate on a multicenter dataset that our approach is able to predict the final infarct and effectively uses the metadata. An ablation study shows that using the native CTP measurements instead of the deconvolved measurements improves the prediction.Comment: Accepted for publication in Medical Image Analysi

    Comparison of CT and CMR for detection and quantification of carotid artery calcification:the Rotterdam Study

    Get PDF
    Background: Carotid artery atherosclerosis is an important risk factor for stroke. As such, quantitative imaging of carotid artery calcification, as a proxy of atherosclerosis, has become a cornerstone of current stroke research. Yet, population-based data comparing the computed tomography (CT) and cardiovascular magnetic resonance (CMR) for the detection and quantification of calcification remain scarce. Methods: A total of 684 participants from the population-based Rotterdam Study underwent both a CT and CMR of the carotid artery bifurcation to quantify the amount of carotid artery calcification (mean interscan interval: 4.9 ± 1.2 years). We investigated the correlation between the amount of calcification measured on CT and CMR using Spearman’s correlation coefficient, Bland-Altman plots, and linear regression. In addition, using logistic regression modeling, we assessed the association of CT and CMR based calcification volumes with a history of stroke. Results: We found a strong correlation between CT and CMR based calcification volumes (Spearman’s correlation coefficient:0.86, p-value ≤0.01). Bland-Altman analyses showed a good agreement, though CT based calcification volumes were systematically larger. Finally, calcification volume assessed with either imaging modality was associated with a history of stroke with similar effect estimates (odds ratio (OR) per 1-SD increase in calcification volume: 1.52 (95% CI:1.00;2.30) for CT, and 1.47 (95% CI:1.01;2.14) for CMR. Conclusion: CT based and CMR based volumes of carotid artery calcification are highly correlated, but CMR based calcification is systematically smaller than those obtained with CT. Despite this difference, both provide comparable information with regard to a history of stroke. Electronic supplementary material The online version of this article (doi:10.1186/s12968-017-0340-z) contains supplementary material, which is available to authorized users

    autoTICI: Automatic Brain Tissue Reperfusion Scoring on 2D DSA Images of Acute Ischemic Stroke Patients

    Get PDF
    The Thrombolysis in Cerebral Infarction (TICI) score is an important metric for reperfusion therapy assessment in acute ischemic stroke. It is commonly used as a technical outcome measure after endovascular treatment (EVT). Existing TICI scores are defined in coarse ordinal grades based on visual inspection, leading to inter- and intra-observer variation. In this work, we present autoTICI, an automatic and quantitative TICI scoring method. First, each digital subtraction angiography (DSA) sequence is separated into four phases (non-contrast, arterial, parenchymal and venous phase) using a multi-path convolutional neural network (CNN), which exploits spatio-temporal features. The network also incorporates sequence level label dependencies in the form of a state-transition matrix. Next, a minimum intensity map (MINIP) is computed using the motion corrected arterial and parenchymal frames. On the MINIP image, vessel, perfusion and background pixels are segmented. Finally, we quantify the autoTICI score as the ratio of reperfused pixels after EVT. On a routinely acquired multi-center dataset, the proposed autoTICI shows good correlation with the extended TICI (eTICI) reference with an average area under the curve (AUC) score of 0.81. The AUC score is 0.90 with respect to the dichotomized eTICI. In terms of clinical outcome prediction, we demonstrate that autoTICI is overall comparable to eTICI.Comment: 10 pages; submitted to IEEE TM

    Microstructural brain injury in post-concussion syndrome after minor head injury

    Get PDF
    Introduction: After minor head injury (MHI), post-concussive symptoms commonly occur. The purpose of this study was to correlate the severity of post-concussive symptoms in MHI patients with MRI measures of microstructural brain injury, namely mean diffusivity (MD) and fractional anisotropy (FA), as well as the presence of microhaemorrhages. Methods: Twenty MHI patients and 12 healthy controls were scanned at 3 T using diffusion tensor imaging (DTI) and high-resolution gradient recalled echo (HRGRE) T2*-weighted sequences. One patient was excluded from the analysis because of bilateral subdural haematomas. DTI data were preprocessed using Tract Based Spatial Statistics. The resulting MD and FA images were correlated with the severity of post-concussive symptoms evaluated with the Rivermead Postconcussion Symptoms Questionnaire. The number and location of microhaemorrhages were assessed on the HRGRE T2*-weighted images. Results: Comparing patients with controls, there were no differences in MD. FA was decreased in the right temporal subcortical white matter. MD was increased in association with the severity of post-concussive symptoms in the inferior fronto-occipital fasciculus (IFO), the inferior longitudinal fasciculus and the superior longitudinal fasciculus. FA was reduced in association with the severity of post-concussive symptoms in the uncinate fasciculus, the IFO, the internal capsule and the corpus callosum, as well as in the parietal and frontal subcortical white matter. Microhaemorrhages were observed in one patient only. Conclusions: The severity of post-concussive symptoms after MHI was significantly correlated with a reduction of white matter integrity, providing evidence of microstructural brain injury as a neuropathological substrate of the post-concussion syndrome

    High shear stress relates to intraplaque haemorrhage in asymptomatic carotid plaques

    Get PDF
    AbstractBackground and aimsCarotid artery plaques with vulnerable plaque components are related to a higher risk of cerebrovascular accidents. It is unknown which factors drive vulnerable plaque development. Shear stress, the frictional force of blood at the vessel wall, is known to influence plaque formation. We evaluated the association between shear stress and plaque components (intraplaque haemorrhage (IPH), lipid rich necrotic core (LRNC) and/or calcifications) in relatively small carotid artery plaques in asymptomatic persons.MethodsParticipants (n = 74) from the population-based Rotterdam Study, all with carotid atherosclerosis assessed on ultrasound, underwent carotid MRI. Multiple MRI sequences were used to evaluate the presence of IPH, LRNC and/or calcifications in plaques in the carotid arteries. Images were automatically segmented for lumen and outer wall to obtain a 3D reconstruction of the carotid bifurcation. These reconstructions were used to calculate minimum, mean and maximum shear stresses by applying computational fluid dynamics with subject-specific inflow conditions. Associations between shear stress measures and plaque composition were studied using generalized estimating equations analysis, adjusting for age, sex and carotid wall thickness.ResultsThe study group consisted of 93 atherosclerotic carotid arteries of 74 participants. In plaques with higher maximum shear stresses, IPH was more often present (OR per unit increase in maximum shear stress (log transformed) = 12.14; p = 0.001). Higher maximum shear stress was also significantly associated with the presence of calcifications (OR = 4.28; p = 0.015).ConclusionsHigher maximum shear stress is associated with intraplaque haemorrhage and calcifications

    Validation of automated Alberta Stroke Program Early CT Score (ASPECTS) software for detection of early ischemic changes on non-contrast brain CT scans

    Get PDF
    Purpose: In ASPECTS, 10 brain regions are scored visually for presence of acute ischemic stroke damage. We evaluated automated ASPECTS in comparison to expert readers. Methods: Consecutive, baseline non-contrast CT-scans (5-mm slice thickness) from the prospective MR CLEAN trial (n = 459, MR CLEAN Netherlands Trial Registry number: NTR1804) were evaluated. A two-observer consensus for ASPECTS regions (normal/abnormal) was used as reference standard for training and testing (0.2/0.8 division). Two other observers provided individual ASPECTS-region scores. The Automated ASPECTS software was applied. A region score specificity of ≥ 90% was used to determine the software threshold for detection of an affected region based on relative density difference between affected and contralateral region. Sensitivity, specificity, and receiver-operating characteristic curves were calculated. Additionally, we assessed intraclass correlation coefficients (ICCs) for automated ASPECTS and observers in comparison to the reference standard in the test set. Results: In the training set (n = 104), with software thresholds for a specificity of ≥ 90%, we found a sensitivity of 33–49% and an area under the curve (AUC) of 0.741–0.785 for detection of an affected ASPECTS region. In the test set (n = 355), the results for the found software thresholds were 89–89% (specificity), 41–57% (sensitivity), and 0.750–0.795 (AUC). Comparison of automated ASPECTS with the reference standard resulted in an ICC of 0.526. Comparison of observers with the reference standard resulted in an ICC of 0.383–0.464. Conclusion: The performance of automated ASPECTS is comparable to expert readers and could support readers in the detection of early ischemic changes
    • …
    corecore