93 research outputs found

    Eicosapentaenoic acid incorporation in membrane phospholipids modulates receptor-mediated phospholipase C and membrane fluidity in rat ventricular myocytes in culture

    Get PDF
    The influence of increased incorporation of linoleic acid (18:2n-6) and eicosapentaenoic acid (20:5n-3) in membrane phospholipids on receptor-mediated phospholipase CĪ² (PLC-Ī²) activity in cultured rat ventricular myocytes was investigated. For this purpose, cells were grown for 4 days in control, stearic acid (18:0)/oleic acid (18:1n-9), 18:2n-6 and 20:5n-3 enriched media, and subsequently assayed for the basal- and phenylephrine- or endothelin-1-induced total inositol phosphate formation. The various fatty acid treatments resulted in the expected alterations of fatty acid composition of membrane phospholipids. In 18:2n-6-treated cells, the incorporation of this 18:2n-6 in the phospholipids increased from 17.1 mol % in control cells to 38.9 mol %. In 20:5n-3-treated cells, incorporation of 20: 5n-3 and docosapentaenoic acid (22:5n-3) in the phospholipids increased from 0.5 and 2.7 mol % in control cells to 23.2 and 9.7 mol %, respectively. When 20:5n-3-treated cells were stimulated with phenylephrine or endothelin-1, the inositolphosphate production decreased by 33.2% and increased by 43.4%, respectively, as compared to cells grown in control medium. No efffects were seen in 18:2n-6-treated cells. When 18:0/18:1n-9-treated cells were stimulated with endothelin-1, inositolphosphate formation increased by 26.4%, whereas phenylephrine-stimulated inositolphosphate formation was not affected. In saponin-permeabilized cells, that were pre-treated with 20:5n-3, the formation of total inositolphosphates after stimulation with GTPĪ³S, in the presence of Ca2+, was inhibited 19.3%. This suggests that the 20:5n-3 effect on intact cardiomyocytes could be exerted either on the level of agonist-receptor, receptor-GTP-binding-protein coupling or GTP-binding-protein-PLC-Ī² interaction. Investigation of the time course of saponin-induced permeabilization of the cardiomyocytes, measured by the release of lactate dehydrogenase, unmasked a slight decrease in the rate of permeabilization by 20:5n-3 pretreatment, indicating a protective effect. This led the authors to measure the cholesterol/phospholipid molar ratio, the double bond index of membrane phospholipids, and the membrane fluidity; the latter by using a diphenylhexatriene probe. In 20: 5n-3-pretreated cells, a strong increase in the cholesterol/phospholipid molar ratio (from 0.23 to 0.39), a marked increase in the double bond index (from 1.76 to 2.33), and a slight decrease in fluidity (steady-state anisotropy r(ss) of the diphenylhexatriene probe increased from 0.196 to 0.217) were observed. Thus, treatment of cardiomyocytes for 4 days with 20:5n-3, but not with 18:2n-6, causes alterations of receptor-mediated phospholipase CĪ² activity. A causal relationship may exist between the 20:5 n-3-induced alterations of the physicochemical properties in the bilayer and of the agonist-stimulated phosphatidylinositol cycle activity

    Adenovirus-based phospholamban antisense expression as a novel approach to improve cardiac contractile dysfunction: comparison of a constitutive viral versus an endothelin-1-responsive cardiac promoter

    Get PDF
    BACKGROUND: A decrease in sarcoplasmic reticulum Ca(2+) pump (SERCA2) activity is believed to play a role in the impairment of diastolic function of the failing heart. Because the expression ratio of phospholamban (PL) to SERCA2 may be a target to improve contractile dysfunction, a PL antisense RNA strategy was developed under the control of either a constitutive cytomegalovirus (CMV) or an inducible atrial natriuretic factor (ANF) promoter. The latter is upregulated in hypertrophied and failing heart, allowing "induction-by-disease" gene therapy. METHODS AND RESULTS: Part of the PL cDNA was cloned in antisense and sense directions into adenovectors under the control of either a CMV (Ad5CMVPLas and Ad5CMVPLs, respectively) or ANF (Ad5ANFPLas and Ad5ANFPLs, respectively) promoter. Infection of cultured rat neonatal cardiomyocytes with Ad5CMVPLas reduced PL mRNA to 30+/-7% of baseline and PL protein to 24+/-3% within 48 and 72 hours, respectively. The effects were vector dose dependent. Ad5CMVPLas increased the Ca(2+) sensitivity of SERCA2 and reduced the time to 50% recovery of the Ca(2+) transient. A decrease of PL protein was also achieved by infection with Ad5ANFPLas, and the presence of the hypertrophic stimulus, endothelin-1, led to enhanced downregulation of PL. The adenovectors expressing PL sense RNA had no effect on any of the tested parameters. CONCLUSIONS: Vector-mediated PL antisense RNA expression may become a feasible approach to modulate myocyte Ca(2+) homeostasis in the failing heart. The inducible ANF promoter for the first time offers the perspective for induction-by-disease gene therapy, ie, selective expression of therapeutic genes in hypertrophied and failing cardiomyocytes

    Plasma natriuretic peptide levels reflect changes in heart failure symptoms, left ventricular size and function after surgical mitral valve repair

    Get PDF
    Background and aim: N-terminal pro-B-type natriuretic peptide (NT-proBNP) has diagnostic and prognostic value in patients with heart failure. The present prospective study was designed to assess whether changes in NT-proBNP levels after surgical mitral valve repair reflect changes in heart failure symptoms an

    Epicardium-derived cells are important for correct development of the Purkinje fibers in the avian heart

    Get PDF
    During embryonic development, the proepicardial organ (PEO) grows out over the heart surface to form the epicardium. Following epithelial-mesenchymal transformation, epicardium-derived cells (EPDCs) migrate into the heart and contribute to the developing coronary arteries, to the valves, and to the myocardium. The peripheral Purkinje fiber network develops from differentiating cardiomyocytes in the ventricular myocardium. Intrigued by the close spatial relationship between the final destinations of migrating EPDCs and Purkinje fiber differentiation in the avian heart, that is, surrounding the coronary arteries and at subendocardial sites, we investigated whether inhibition of epicardial outgrowth would disturb cardiomyocyte differentiation into Purkinje fibers. To this end, epicardial development was inhibited mechanically with a membrane, or genetically, by suppressing epicardial epithelial-to-mesenchymal transformation with antisense retroviral vectors affecting Ets transcription factor levels (n = 4, HH39-41). In both epicardial inhibition models, we evaluated Purkinje fiber development by EAP-300 immunohistochemistry and found that restraints on EPDC development resulted in morphologically aberrant differentiation of Purkinje fibers. Purkinje fiber hypoplasia was observed both periarterially and at subendocardial positions. Furthermore, the cells were morphologically abnormal and not aligned in orderly Purkinje fibers. We conclude that EPDCs are instrumental in Purkinje fiber differentiation, and we hypothesize that they coo

    Effects of early intracoronary streptokinase on infarct size estimated from cumulative enzyme release and on enzyme release rate: A randomized trial of 533 patients with acute myocardial infarction

    Get PDF
    The effects of early intracoronary streptokinase (SK) on enzymatic infarct size and rate of enzyme release were studied in a randomized multicenter trial. A total of 533 patients with acute myocardial infarction (AMI) were allocated to either the SK treatment group (n = 269) or the conventional (control) treatment group (n = 264). Enzymatic infarct size was represented by the cumulative quantity of alpha-hydroxybutyrate dehydrogenase (HBDH) released by the heart per liter of plasma in the first 72 hours. Rate of enzyme release was represented by the ratio of HBDH quantities released in 24 hours and 72 hours. On an "intention to treat" basis, the SK group had a smaller (by 30%; p = 0.0001) median enzymatic infarct size and a higher (by 35%; p = 0.0001) median rate of enzyme release than the control group. Limitation of infarct size was less apparent in patients tre

    Modulation of calcification of vascular smooth muscle cells in culture by calcium antagonists, statins, and their combination

    Get PDF
    Background Vascular calcification is an organized process in which vascular smooth muscle cells (VSMCs) are implicated primarily. The purpose of the present study was to assess the effects of calcium antagonists and statins on VSMC calcification inĀ vitro. Methods VSMC calcification was stimulated by incubation in growth medium supplemented with 10Ā mmol/l Ī²-glycerophosphate, 8Ā mmol/l CaCl2, 10Ā mmol/l sodium pyruvate, 1Ā Ī¼mol/l insulin, 50Ā Ī¼g/ml ascorbic acid, and 100Ā nmol/l dexamethasone (calcification medium). Calcification, proliferation, and apoptosis of VSMCs were quantified. Results Calcium deposition was stimulated dose-dependently by Ī²-glycerophosphate, CaCl2, and ascorbic acid (all PĀ <Ā 0.01). Addition of amlodipine (0.01ā€“1Ā Ī¼mol/l) to the calcification medium did not affect VSMC calcification. However, atorvastatin (2ā€“50Ā Ī¼mol/l) stimulated calcium deposition dose-dependently. Combining treatments stimulated calcification to a degree similar to that observed with atorvastatin alone. Both atorvastatin and amlodipine inhibited VSMC proliferation at the highest concentration used. Only atorvastatin (50Ā Ī¼mol/l) induced considerable apoptosis of VSMCs. Conclusion InĀ vitro calcification of VSMCs is not affected by amlodipine, but is stimulated by atorvastatin at concentrations ā‰„10Ā Ī¼mol/l, which could contribute to the plaque-stabilizing effect reported for statins

    Stem and Progenitor Cell Therapy for Pulmonary Arterial Hypertension: Effects on the Right Ventricle (2013 Grover Conference Series)

    No full text
    Abstract. In experimental animals and in patients with pulmonary arterial hypertension (PAH), a wide spectrum of structural and functional conditions is known that may be responsible for the switch of a state of ā€œcompensatedā€ right ventricular (RV) hypertrophy to a state of RV failure. In recent years, therapy with differentiated cells, endothelial progenitor cells, and mesenchymal stem cells has been shown to cause partial or complete reversal of pathological characteristics of PAH. The therapeutic effects of stem or progenitor cell therapy are considered to be (1) paracrine effects from stem or progenitor cells that had engrafted in the myocardium (or elsewhere), by compounds that have anti-inflammatory, antiapoptotic, and proangiogenic actions and (2) unloading effects on the right ventricle due to stem or progenitor cellā€“induced decrease in pulmonary vascular resistance and decrease in pulmonary artery pressure
    • ā€¦
    corecore