37 research outputs found

    The effect of directional inertias added to pelvis and ankle on gait

    Get PDF
    Background Gait training robots should display a minimum added inertia in order to allow normal walking. The effect of inertias in specific directions is yet unknown. We set up two experiments to assess the effect of inertia in anteroposterior (AP) direction to the ankle and AP and mediolateral (ML) direction to the pelvis. Methods We developed an experimental setup to apply inertia in forward backward and or sideways directions. In two experiments nine healthy subjects walked on a treadmill at 1.5 km/h and 4.5 km/h with no load and with AP loads of 0.3, 1.55 and 3.5 kg to the left ankle in the first experiment and combinations of AP and ML loads on the pelvis (AP loads 0.7, 4.3 and 10.2 kg; ML loads 0.6, 2.3 and 5.3 kg). We recorded metabolic rate, EMG of major leg muscles, gait parameters and kinematics. Results & discussion Adding 1.55 kg or more inertia to the ankle in AP direction increases the pelvis acceleration and decreases the foot acceleration in AP direction both at speeds of 4.5 km/h. Adding 3.5 kg of inertia to the ankle also increases the swing time as well as AP motions of the pelvis and head-arms-trunk (HAT) segment. Muscle activity remains largely unchanged. Adding 10.2 kg of inertia to the pelvis in AP direction causes a significant decrease of the pelvis and HAT segment motions, particularly at high speeds. Also the sagittal back flexion increases. Lower values of AP inertia and ML inertias up to 5.3 kg had negligible effect. In general the found effects are larger at high speeds. Conclusions We found that inertia up to 2 kg at the ankle or 6 kg added to the pelvis induced significant changes, but since these changes were all within the normal inter subject variability we considered these changes as negligible for application as rehabilitation robotics and assistive devices.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Selective control of gait subtasks in robotic gait training: Foot clearance support in stroke survivors with a powered exoskeleton

    Get PDF
    Background Robot-aided gait training is an emerging clinical tool for gait rehabilitation of neurological patients. This paper deals with a novel method of offering gait assistance, using an impedance controlled exoskeleton (LOPES). The provided assistance is based on a recent finding that, in the control of walking, different modules can be discerned that are associated with different subtasks. In this study, a Virtual Model Controller (VMC) for supporting one of these subtasks, namely the foot clearance, is presented and evaluated. Methods The developed VMC provides virtual support at the ankle, to increase foot clearance. Therefore, we first developed a new method to derive reference trajectories of the ankle position. These trajectories consist of splines between key events, which are dependent on walking speed and body height. Subsequently, the VMC was evaluated in twelve healthy subjects and six chronic stroke survivors. The impedance levels, of the support, were altered between trials to investigate whether the controller allowed gradual and selective support. Additionally, an adaptive algorithm was tested, that automatically shaped the amount of support to the subjects’ needs. Catch trials were introduced to determine whether the subjects tended to rely on the support. We also assessed the additional value of providing visual feedback. Results With the VMC, the step height could be selectively and gradually influenced. The adaptive algorithm clearly shaped the support level to the specific needs of every stroke survivor. The provided support did not result in reliance on the support for both groups. All healthy subjects and most patients were able to utilize the visual feedback to increase their active participation. Conclusion The presented approach can provide selective control on one of the essential subtasks of walking. This module is the first in a set of modules to control all subtasks. This enables the therapist to focus the support on the subtasks that are impaired, and leave the other subtasks up to the patient, encouraging him to participate more actively in the training. Additionally, the speed-dependent reference patterns provide the therapist with the tools to easily adapt the treadmill speed to the capabilities and progress of the patient.Biomechanical EngineeringMechanical, Maritime and Materials Engineerin

    Haptic human–human interaction does not improve individual visuomotor adaptation

    No full text
    Haptic interaction between two humans, for example, a physiotherapist assisting a patient regaining the ability to grasp a cup, likely facilitates motor skill acquisition. Haptic human–human interaction has been shown to enhance individual performance improvement in a tracking task with a visuomotor rotation perturbation. These results are remarkable given that haptically assisting or guiding an individual rarely benefits their individual improvement when the assistance is removed. We, therefore, replicated a study that reported that haptic interaction between humans was beneficial for individual improvement for tracking a target in a visuomotor rotation perturbation. In addition, we tested the effect of more interaction time and a stronger haptic coupling between the partners on individual improvement in the same task. We found no benefits of haptic interaction on individual improvement compared to individuals who practised the task alone, independent of interaction time or interaction strength.Human-Robot InteractionBiomechatronics & Human-Machine Contro

    Robust estimation of lumbar joint forces in symmetric and asymmetric lifting tasks via large-scale electromyography-driven musculoskeletal models

    Get PDF
    Low back joint compression forces have been linked to the development of chronic back pain. Back-support exoskeletons controllers based on low back compression force estimates could potentially reduce the incidence of chronic pain. However, progress has been hampered by the lack of robust and accurate methods for compression force estimation. Electromyography (EMG)-driven musculoskeletal models have been proposed to estimate lumbar compression forces. Nonetheless, they commonly underrepresented trunk musculoskeletal geometries or activation–contraction dynamics, preventing validation across large sets of conditions. Here, we develop and validate a subject-specific large-scale (238 muscle–tendon units) EMG-driven musculoskeletal model for the estimation of lumbosacral moments and compression forces, under eight box-lifting conditions. Ten participants performed symmetric and asymmetric box liftings under 5 and 15 kg weight conditions. EMG-driven model-based estimates of L5/S1 flexion–extension moments displayed high correlation, R2 (mean range: 0.88–0.94), and root mean squared errors between 0.21 and 0.38 Nm/kg, with respect to reference inverse dynamics moments. Model-derived muscle forces were utilized to compute lumbosacral compression forces, which reached eight times participants body weight in 15 kg liftings. For conditions involving stooped postures, model-based analyses revealed a predominant decrease in peak lumbar EMG amplitude during the lowering phase of liftings, which did not translate into a decrease in muscle–tendon forces. During eccentric contraction (box-lowering), our model employed the muscle force–velocity relationship to preserve muscle force despite significant EMG reduction. Our modeling methodology can inherently account for EMG-to-force non-linearities across subjects and lifting conditions, a crucial requirement for robust real-time control of back-support exoskeletons.Support Biomechanical Engineerin

    Comparison of Lower Arm Weight and Passive Elbow Joint Impedance Compensation Strategies in Non-Disabled Participants

    No full text
    People with severe muscle weakness in the upper extremity are in need of an arm support to enhance arm function and improve their quality of life. In addition to weight support, compensation of passive joint impedance (pJimp) seems necessary. Existing devices do not compensate for pJimp yet, and the best way to compensate for it is still unknown. The aim of this study is to 1) identify pJimp of the elbow, and 2) compare four different compensation strategies of weight and combined weight and pJimp in an active elbow support system. The passive elbow joint moments, including gravitational and pJimp contributions, were measured in 12 non-disabled participants. The four compensation strategies (scaled-model, measured, hybrid, and fitted-model) were compared using a position-tracking task in the near vertical plane. All four strategies showed a significant reduction (20–47%) in the anti-gravity elbow flexor activity measured by surface electromyography. The pJimp turned out to contribute to a large extent to the passive elbow joint moments (range took up 60%) in non-disabled participants. This underlines the relevance of compensating for pJimp in arm support systems. The parameters of the scaled-model and hybrid strategy seem to overestimate the gravitational component. Therefore, the measured and fitted-model strategies are expected to be most promising to test in people with severe muscle weakness combined with elevated pJimp.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine ControlSupport Biomechanical Engineerin

    Increasing variable stiffness actuator-response using an electromagnetic spring

    No full text
    An electromagnetic spring-based variable stiffness actuator is a new concept with the potential to change stiffness faster than mechanical springs can; however, its nonlinear elastic property is a challenge in actuator design. In this paper, the torque response of a custom-made electromagnetic spring was studied using a ramping force test and electromagnetic simulation. A two-zone linear region, from 0° to 2° and 2° to 6.5°, was observed and explained through magnetic flux simulation to provide insight into the fundamentals of the electromagnetic spring. An unusual impedance response was also noted from this regional linearity, appeared on a step gain in Bode plot of end-point impedance in a dynamic test.Accepted Author ManuscriptBiomechatronics & Human-Machine Contro

    Persuasive Game Design: A model and its definitions

    No full text
    The following position paper proposes a general theoretical model for persuasive game design. This model combines existing theories on persuasive technology, serious gaming, and gamification. The model is based on user experience, gamification design, and transfer effects.Industrial DesignIndustrial Design Engineerin

    Automatic versus manual tuning of robot-assisted gait training in people with neurological disorders

    Get PDF
    Background: In clinical practice, therapists choose the amount of assistance for robot-assisted training. This can result in outcomes that are influenced by subjective decisions and tuning of training parameters can be time-consuming. Therefore, various algorithms to automatically tune the assistance have been developed. However, the assistance applied by these algorithms has not been directly compared to manually-tuned assistance yet. In this study, we focused on subtask-based assistance and compared automatically-tuned (AT) robotic assistance with manually-tuned (MT) robotic assistance. Methods: Ten people with neurological disorders (six stroke, four spinal cord injury) walked in the LOPES II gait trainer with AT and MT assistance. In both cases, assistance was adjusted separately for various subtasks of walking (in this study defined as control of: weight shift, lateral foot placement, trailing and leading limb angle, prepositioning, stability during stance, foot clearance). For the MT approach, robotic assistance was tuned by an experienced therapist and for the AT approach an algorithm that adjusted the assistance based on performances for the different subtasks was used. Time needed to tune the assistance, assistance levels and deviations from reference trajectories were compared between both approaches. In addition, participants evaluated safety, comfort, effect and amount of assistance for the AT and MT approach. Results: For the AT algorithm, stable assistance levels were reached quicker than for the MT approach. Considerable differences in the assistance per subtask provided by the two approaches were found. The amount of assistance was more often higher for the MT approach than for the AT approach. Despite this, the largest deviations from the reference trajectories were found for the MT algorithm. Participants did not clearly prefer one approach over the other regarding safety, comfort, effect and amount of assistance. Conclusion: Automatic tuning had the following advantages compared to manual tuning: quicker tuning of the assistance, lower assistance levels, separate tuning of each subtask and good performance for all subtasks. Future clinical trials need to show whether these apparent advantages result in better clinical outcomes.Biomechatronics & Human-Machine Contro

    Centre of pressure modulations in double support effectively counteract anteroposterior perturbations during gait

    Get PDF
    Centre of mass (CoM) motion during human balance recovery is largely influenced by the ground reaction force (GRF) and the centre of pressure (CoP). During gait, foot placement creates a region of possible CoP locations in the following double support (DS). This study aims to increase insight into how humans modulate the CoP during DS, and which CoP modulations are theoretically possible to maintain balance in the sagittal plane. Three variables sufficient to describe the shape, length and duration of the DS CoP trajectory of the total GRF, were assessed in perturbed human walking. To counteract the forward perturbations, braking was required and all CoP variables showed modulations correlated to the observed change in CoM velocity over the DS phase. These correlations were absent after backward perturbations, when only little propulsion was needed to counteract the perturbation. Using a linearized inverted pendulum model we could explore how the observed parameter modulations are effective in controlling the CoM. The distance the CoP travels forward and the instant the leading leg was loaded largely affected the CoM velocity, while the duration mainly affected the CoM position. The simulations also showed that various combinations of CoP parameters can reach a desired CoM position and velocity at the end of DS, and that even a full recovery in the sagittal plane within DS would theoretically have been possible. However, the human subjects did not exploit the therefore required CoP modulations. Overall, modulating the CoP trajectory in DS does effectively contributes to balance recovery.Biomechatronics & Human-Machine Contro

    Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models

    No full text
    Lumbar joint compression forces have been linked to the development of chronic low back pain, which is specially present in occupational environments. Offline methodologies for lumbosacral joint compression force estimation are not commonly integrated in occupational or medical applications due to the highly time-consuming and complex post-processing procedures. Hence, applications such as real-time adjustment of assistive devices (i.e., back-support exoskeletons) for optimal modulation of compression forces remains unfeasible. Here, we present a real-time electromyography (EMG)-driven musculoskeletal model, capable of estimating accurate lumbosacral joint moments and plausible compression forces. Ten participants performed box-lifting tasks (5 and 15 kg) with and without the Laevo Flex back-support exoskeleton using squat and stoop lifting techniques. Lumbosacral kinematics and EMGs from abdominal and thoracolumbar muscles were used to drive, in real-time, subject-specific EMG-driven models, and estimate lumbosacral joint moments and compression forces. Real-time EMG-model derived moments showed high correlations (R2 = 0.76 - 0.83) and estimation errors below 30% with respect to reference inverse dynamic moments. Compared to unassisted lifting conditions, exoskeleton liftings showed mean lumbosacral joint moments and compression forces reductions of 11.9 - 18.7 Nm (6 - 12% of peak moment) and 300 - 450 N (5 - 10%), respectively. Our modelling framework was capable of estimating in real-time, valid lumbosacral joint moments and compression forces in line with in vivo experimental data, as well as detecting the biomechanical effects of a passive back-support exoskeleton. Our presented technology may lead to a new class of bio-protective robots in which personalized assistance profiles are provided based on subject-specific musculoskeletal variables.Support Biomechanical Engineerin
    corecore