500 research outputs found

    Large-scale HI in nearby radio galaxies: segregation in neutral gas content with radio source size

    Get PDF
    We present results of a study of neutral hydrogen (HI) in a complete sample of nearby non-cluster radio galaxies. We find that radio galaxies with large amounts of extended HI (M_HI >= 10^9 M_solar) all have a compact radio source. The host galaxies of the more extended radio sources, all of Fanaroff & Riley type-I, do not contain these amounts of HI. We discuss several possible explanations for this segregation. The large-scale HI is mainly distributed in disk- and ring-like structures with sizes up to 190 kpc and masses up to 2 x 10^10 M_solar. The formation of these structures could be related to past merger events, although in some cases it may also be consistent with a cold-accretion scenario.Comment: 4 pages, 2 figures. Accepted for publication in A&A Letters. A version with full resolution figures can be found at http://www.astro.rug.nl/~emonts/emonts_HIletter_jan07.pd

    From gas to galaxies

    Full text link
    The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes. In deep surveys SKA will be able to detect HI in emission out to redshifts of z≈2.5z \approx 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars. These and other aspects of SKA imaging of galaxies will be discussed.Comment: To be published in New Astronomy Reviews, Elsevier, Amsterdam as part of "Science with the Square Kilometre Array", eds. C. Carilli and S. Rawlings. 18 pages + 13 figures; high resolution version and other chapters of "Science with the Square Kilometre Array" available at http://www.skatelescope.org/pages/science_gen.ht

    Fast outflow of neutral hydrogen in the radio galaxy 3C293

    Full text link
    We report the detection of very broad HI absorption against the central regions of the radio galaxy 3C293. The absorption profile, obtained with the Westerbork Synthesis Radio Telescope, has a full width at zero intensity of about 1400 km/s and most of this broad absorption (~1000 km/s) is blueshifted relative to the systemic velocity. This absorption represents a fast outflow of neutral gas from the central regions of this AGN. Possible causes for such an outflow are discussed. We favour the idea that the interaction between the radio jet and the rich ISM produces this outflow. Some of the implications of this scenario are considered.Comment: 11 pages, 4 Figures To be published in: Astrophysical Journal Letter

    Atomic and molecular gas in the merger galaxy NGC 1316 (Fornax A) and its environment

    Get PDF
    We present and interpret observations of atomic and molecular gas toward the southern elliptical galaxy NGC 1316 (Fornax A), a strong double-lobe radio source with a disturbed optical morphology that includes numerous shells and loops. The 12CO(1-0), 12CO(2-1), and HI observations were made with SEST and the VLA. CO emission corresponding to a total molecular hydrogen mass of 5x10^8 Msun was detected toward the central position as well as northwest and southeast of the nucleus in the regions of the dust patches. The origin of that gas is likely external and due to accretion of one or several small gas-rich galaxies. HI was not detected in the central region of NGC1316, but ~2x10^7 Msun of atomic gas was found toward the giant HII region discovered by Schweizer (1980) located 6.7 arcmin (or 36.2 kpc) from the nucleus. HI was also found at three other locations in the outer part of NGC 1316. The HI distributions and kinematics of the two nearby spiral companions of NGC 1316, NGC 1317 (a barred galaxy to the north) and NGC 1310 (to the west) could be studied. Both galaxies have unusually small HI disks that may have been affected by ram-pressure stripping

    ESO 381-47, an early-type galaxy with extended HI and a star forming ring

    Full text link
    ESO 381-47 is an early type galaxy with an extended HI disk. GALEX and very deep optical images reveal a distinct stellar ring far outside the optical body with a diameter of ~30 kpc, which has undergone recent star formation at 1.8 x 10^-4 Msun/yr/kpc^-2, consistent with other new results which detect low level star formation below the traditional Kennicutt relation in the outer parts of spiral galaxies. The morphology of this galaxy resembles the recently identified class of ultraviolet objects called extended ultraviolet disks, or XUV-disks. New HI observations of this galaxy taken at the ATCA and in the CnB array at the VLA show that the cold gas lies in an extended (diameter ~90 kpc) ring around the central S0 galaxy. The HI data cube can be well modeled by a warped ring. The faint ionized gas in the inner parts of the galaxy is kinematically decoupled from the stars and instead appears to exhibit velocities consistent with the rotation of the HI ring at larger radius. The peak of the stellar ring, as seen in the optical and UV, is slightly displaced to the inside relative to the peak of the HI ring. We discuss the manner in which this offset could be caused by the propagation of a radial density wave through an existing stellar disk, perhaps triggered by a galaxy collision at the center of the disk, or possibly due to a spiral density wave set up at early times in a disk too hot to form a stellar bar. Gas accretion and resonance effects due to a bar which has since dissolved are also considered to explain the presence of the star forming ring seen in the GALEX and deep optical data.Comment: 48 pages, 16 figures, 4 tables. Accepted for publication in the Astronomical Journa

    Fast outflow of neutral and ionized gas from the radio galaxy 3C 293

    Get PDF
    Abstract: We detect a fast outflow of neutral and ionized gas with velocities up to about 1000 km/s from the central region of radio galaxy 3C 293. With optical spectroscopy we locate the bulk of the ionized gas outflow at the position of a bright radio hot-spot in the inner radio jet, about 1 kpc east of the nucleus. Given the presence of large amounts of cold gas and the distorted morphology of the radio jet in this region, we argue that the ISM is pushed out by a severe interaction with the radio plasma. The similarity of the outflow of HI with the ionized gas outflow that we see at the position of the radio hot-spot suggests that despite the high energies involved in the jet-ISM interaction, part of the gas stays, or becomes again, neutral. In this paper we also present the detection of HI emission in three nearby companions of 3C 293

    A jet-induced outflow of warm gas in 3C 293

    Get PDF
    Using long slit emission-line spectra we detect a fast outflow of ionized gas, with velocities up to 1000 km/s, in the nearby powerful radio galaxy 3C 293 (z = 0.045). The fast outflow is located about 1 kpc east of the nucleus, in a region of enhanced radio emission due to the presence of a distorted radio jet. We present results that indicate that this fast outflow is caused by a jet-ISM interaction. The kinematics of the outflowing ionized gas are very similar to those of a fast outflow of neutral hydrogen gas in this galaxy, suggesting that both outflows are the result of the same driving mechanism. While the mass of the outflowing ionized gas is about 1 x 10e5 M_sun, the total HI mass involved in the neutral outflow is about 100 times higher (10e7 M_sun). This shows that, despite the high energies that must be involved in driving the outflow, most of the gas remains, or becomes again, neutral. Other outflows of ionized gas, although not as pronounced as in the region of the enhanced radio emission, are also seen in various other regions along the axis of the inner radio jets. The regular kinematics of the emission-line gas along the major axis of the host galaxy reveal a rotating ionized gas disk 30 kpc in extent.Comment: 15 pages, 10 figures. Accepted for publication in MNRAS. A full resolution version can be found at http://www.astro.rug.nl/~emonts/MF268rv.pd

    Neutral Gas Distribution and Kinematics of the Nearly Face-on Spiral Galaxy NGC 1232

    Get PDF
    We have analyzed high velocity resolution HI synthesis observations of the nearly face-on Sc galaxy NGC 1232. The neutral gas distribution extends well beyond the optical extent of the galaxy. As expected, local peaks in the HI column density are associated with the spiral arms. Further, the HI column density drops precipitously near the center of the galaxy. Closed contours in the velocity field suggest either that the system is warped, or that the rotation curve declines. The velocity dispersion is approximately constant throughout the system, with a median value of 9.9 +/- 1.8 km/s. When corrected for rotational broadening, there is no indication of a radial trend in the neutral gas velocity dispersion in this galaxy.Comment: 14 pages of text, 10 pages of figures. Accepted to the A
    • 

    corecore