42 research outputs found

    Towards strengthening memory immunity in the ageing population:Investigating the immunological fitness of middle-aged adults

    Get PDF
    Nieuwe vaccinatie strategie voor bescherming van ouderen tegen infectiesDe wereldbevolking is snel aan het vergrijzen. Volgens de verwachtingen zal het aantal personen ouder dan 60 jaar in 2060 verdubbeld zijn. Bovendien neemt de levensverwachting van de ouderen verder toe. Dit gaat helaas gepaard met een toename van ernstige infectieziekten. In het kader van gezond ouder worden is het voorkomen van infectieziekten zoals longontsteking en gordelroos dan ook belangrijk. Goed werkende vaccinaties kunnen infectieziekten voorkomen, maar helaas zijn vaccinaties op oudere leeftijd vaak minder effectief omdat het afweersysteem verzwakt met ouder worden. Het is momenteel niet duidelijk op welke leeftijd het omslagpunt, van een goed werkend afweersysteem naar een verzwakt afweersysteem, plaats vindt. Om dat vast te kunnen stellen zijn er markers nodig die de (naderende) kwetsbaarheid van het afweersysteem aangeven. Deze markers zouden dan ingezet kunnen worden om ouderen tijdig te vaccineren en langdurig te beschermen. Dit concept werd onderzocht door volwassenen van middelbare leeftijd (tussen de 50 en 65 jaar) te vaccineren en de kenmerken van het afweersysteem voor en na vaccinatie in kaart te brengen.In haar proefschrift beschrijft Marieke dat personen van middelbare leeftijd, ondanks de eerste tekenen van immunologische veroudering, goed reageren op een vaccinatie die ze voor de eerste keer ontvangen. Ze voorspelt dat een vaccinatie in deze groep bescherming kan bieden die mogelijk aanblijft tot op oudere leeftijd. Uiteindelijk laat ze zien dat de sterkte van een reactie op een vaccin mogelijk voorspeld kan worden aan de hand van kenmerken van het afweersysteem, de zogenaamde biomarkers. Toekomstig onderzoek zal echter moeten uitwijzen of de voorspelde bescherming tegen infecties op oudere leeftijd ook daadwerkelijk bereikt wordt.Met haar onderzoek zet Marieke de eerste stappen in de richting van een speciaal voor ouderen aangepast toekomstig vaccinatieprogramma.Marieke verdedigt haar proefschrift op 10 januari 2018 in GroningenNovel vaccination strategies to protect the elderly against infectious diseasesThe world population is rapidly ageing. Worldwide predictions indicate that the number of persons above the age of 60 will be doubled by the year 2060. This rapid ageing results in increased numbers of persons susceptible to disease and disability. Prevention of infectious diseases, by effective vaccination, is of high importance to establish healthy ageing. Unfortunately, vaccines often induce suboptimal responses in the elderly, due to ageing of the immune system. Currently, it is unclear at what age the turning point, from a well-functioning immune system to a weakened immune system, occurs. Accordingly, markers are needed to predict the approaching vulnerability of the immune system. These markers could then be used to vaccinate older adults in a timely manner and to induce long-term protection. This concept was investigated by vaccination of middle-aged adults (50-65 years of age) and subsequent description of the characteristics of the pre- and post- vaccination immune response.Marieke describes in her thesis that middle-aged adults, despite the first signs of immunological ageing, show effective responses to a vaccination which they receive for the first time. She predicts that a vaccination in this age group induces protection that could last until high age. Eventually, she shows that the strength of the vaccination response might be predicted by characteristics of the immune system, using so called biomarkers. Future research will determine whether the predicted protection up until high age is actually achieved. The research described in this thesis takes the first steps towards a future vaccination program adapted to the rapidly ageing population.Marieke will defend her thesis on the 10th of January 2018 in Groningen

    Staphylococcus aureus-derived factors promote human Th9 cell polarization and enhance a transcriptional program associated with allergic inflammation

    Get PDF
    T helper (Th) 9 cells, characterized by robust secretion of IL-9, have been increasingly associated with allergic diseases. However, whether and how Th9 cells are modulated by environmental stimuli remains poorly understood. In this study, we show that in vitro exposure of human PBMCs or isolated CD4 T-cells to Staphylococcus (S.) aureus-derived factors, including its toxins, potently enhances Th9 cell frequency and IL-9 secretion. Furthermore, as revealed by RNA sequencing analysis, S. aureus increases the expression of Th9-promoting factors at the transcriptional level, such as FOXO1, miR-155, and TNFRSF4. The addition of retinoic acid (RA) dampens the Th9 responses promoted by S. aureus and substantially changes the transcriptional program induced by this bacterium, while also altering the expression of genes associated with allergic inflammation. Together, our results demonstrate a strong influence of microbial and dietary factors on Th9 cell polarization, which may be important in the context of allergy development and treatment.</p

    Tetanus Toxoid carrier protein induced T-helper cell responses upon vaccination of middle-aged adults

    Get PDF
    INTRODUCTION: Vaccines frequently induce suboptimal immune responses in the elderly, due to immunological ageing. Timely vaccination may be a strategy to overcome this problem, which classifies middle-aged adults asan interesting target group for future vaccine interventions. However, the immunological fitness of the middle-aged population is ill-defined. It is currently unknown whether effective T-cell help towards B-cells is initiated by conjugate-carrier vaccines at middle-age. AIM: We characterized systemic Tetanus Toxoid (TT) specific T-helper cell responses in the circulation of middle-aged adults (50-65years of age, n=31) having received the MenACWY-TT vaccination. METHODS: Blood samples were taken pre- as well as 7days, 28days, and 1year post-vaccination. TT-specific T-cell responses were determined by IFNγ Elispot and by the secretion of IFNγ, IL13, IL10, IL17, and IL21 in cell culture supernatants. Circulating CD4+CXCR5+ICOS+IL21+ cells were analyzed by flow cytometry, and meningococcal and TT-specific IgG responses by bead-based immunoassays. The correlation between the T-cell help and humoral responses was evaluated. RESULTS: Vaccination with a TT-carrier protein induced a mixed TT-specific Th1 (IFNγ), Th2 (IL13, IL10), and Th17 (IL17) response in most participants. Additionally, circulating CD4+CXCR5+ICOS+IL21+ cells were significantly increased 7days post-vaccination. Pre-vaccination TT-specific cytokine production and post-vaccination Th2 responses correlated positively with the increase of CD4+CXCR5+ICOS+IL21+ cells. No correlation between T-cell help and antibody responses was found. CONCLUSION: The characteristics of the T-cell response upon a TT-carrier vaccination suggests effective T-cell help towards B-cells in response to meningococcal polysaccharides, although the absence of a correlation with the antibody responses warrants further clarification. However, the robust T-helper cell response in middle-aged adults, decades after previous TT vaccinations, strengthens the classification of this age group for future vaccine interventions in the context of population ageing

    An Explorative Biomarker Study for Vaccine Responsiveness after a Primary Meningococcal Vaccination in Middle-Aged Adults

    Get PDF
    Introduction: Prevention of infectious diseases in the elderly is essential to establish healthy aging. Yet, immunological aging impairs successful vaccination of the elderly. Predictive biomarkers for vaccine responsiveness in middle-aged adults may help to identify responders and non-responders before reaching old age. Therefore, we aimed to determine biomarkers associated with low and high responsiveness toward a primary vaccination in middle-aged adults, for which a tetravalent meningococcal vaccine was used as a model. Methods: Middle-aged adults (50-65 years of age, N = 100), receiving a tetravalent meningococcal vaccination, were divided into low and high responders using the functional antibody titers at 28 days postvaccination. A total of 48 parameters, including absolute numbers of immune cells and serum levels of cylokines and biochemical markers, were determined prevaccination in all participants. Heat maps and multivariate redundancy analysis (RDA) were used to reveal immune phenotype characteristics and associations of the low and high responders. Results: Several significant differences in prevaccination immune markers were observed between the low and high vaccine responders. Moreover, RDA analysis revealed a significant association between the prevaccination immune phenotype and vaccine responsiveness. In particular, our analysis pointed at high numbers of CD4 T cells, especially naive CD4 and regulatory T subsets, to be associated with low vaccine responsiveness. In addition, low responders showed lower prevaccination IL-1Ra levels than high responders. Conclusion: This explorative biomarker study shows associations between the prevaccination immune phenotype and vaccine responsiveness after a primary meningococcal vaccination in middle-aged adults. Consequently, these results provide a basis for predictive biomarker discovery for vaccine responsiveness that will require validation in larger cohort studies

    Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females

    Get PDF
    The elderly population is more susceptible to infections as a result of an altered immune response, commonly referred to as immunosenescence. Cytomegalovirus (CMV)-infection associated changes in blood lymphocytes are known to impact this process, but the interaction with gender remains unclear. Therefore, we analysed the effects and interaction of gender and CMV on the absolute numbers of a comprehensive set of naive and memory T- and B-cell subsets in people between 50 and 65 years of age. Enumeration and characterisation of lymphocyte subsets by flow cytometry was performed on fresh whole blood samples from 255 middle-aged persons. CMV-IgG serostatus was determined by ELISA. Gender was a major factor affecting immune cell numbers. CMV infection was mainly associated with an expansion of late-differentiated T-cell subsets. CMV+ males carried lower numbers of total CD4+, CD4+ central memory (CM) and follicular helper T-cells than females and CMV- males. Moreover, CMV+ males had significantly lower numbers of regulatory T (Treg)-cells and memory B-cells than CMV+ females. We here demonstrate an interaction between the effects of CMV infection and gender on T- and B-cells in middle-aged individuals. These differential effects on adaptive immunity between males and females may have implications for vaccination strategies at middle-age

    Differential effects of Cytomegalovirus carriage on the immune phenotype of middle-aged males and females

    Get PDF
    The elderly population is more susceptible to infections as a result of an altered immune response, commonly referred to as immunosenescence. Cytomegalovirus (CMV)-infection associated changes in blood lymphocytes are known to impact this process, but the interaction with gender remains unclear. Therefore, we analysed the effects and interaction of gender and CMV on the absolute numbers of a comprehensive set of naive and memory T- and B-cell subsets in people between 50 and 65 years of age. Enumeration and characterisation of lymphocyte subsets by flow cytometry was performed on fresh whole blood samples from 255 middle-aged persons. CMV-IgG serostatus was determined by ELISA. Gender was a major factor affecting immune cell numbers. CMV infection was mainly associated with an expansion of late-differentiated T-cell subsets. CMV+ males carried lower numbers of total CD4+, CD4+ central memory (CM) and follicular helper T-cells than females and CMV-males. Moreover, CMV+ males had significantly lower numbers of regulatory T (Treg)-cells and memory B-cells than CMV+ females. We here demonstrate an interaction between the effects of CMV infection and gender on T-and B-cells in middle-aged individuals. These differential effects on adaptive immunity between males and females may have implications for vaccination strategies at middle-age

    High torque tenovirus (TTV) load before first vaccine dose is associated with poor serological response to COVID-19 vaccination in lung transplant recipients

    Get PDF
    BACKGROUND: : Serological responses to COVID-19 vaccination are diminished in recipients of solid organ transplants, especially in lung transplant recipients (LTR), probably as result of immunosuppressive treatment. There is currently no marker of immunosuppression that can be used to predict the COVID-19 vaccination response. Here, we study whether torque tenovirus (TTV), a highly prevalent virus can be used as an indicator of immunosuppression. METHODS: : The humoral response to the mRNA 1273 vaccine was assessed in 103 LTR, who received a transplant between 4 and 237 months prior to vaccination, by measuring Spike (S)-specific IgG levels at baseline, 28 days after first, and 28 days after the second vaccination. TTV loads were determined by RT-PCR and Pearson's correlation coefficient was calculated to correlate serological responses to TTV load. RESULTS: : Humoral responses to COVID-19 vaccination were observed in 41/103 (40%) LTR at 28 days after the second vaccination. 62/103 (60%) were non-responders. Lower TTV loads at baseline (significantly) correlated with higher S-specific antibodies and a higher percentage of responders. Lower TTV loads also strongly correlated with longer time since transplantation, indicating that participants with lower TTV loads were longer after transplantation. CONCLUSIONS: : This study shows a better humoral response to the SARS-CoV-2 vaccine in subjects with a lower TTV load pre-vaccination. In addition, TTV load correlates with the time after transplantation. Further studies on the use of TTV load in vaccination efficacy studies in immunocompromised cohorts should provide leads for the potential use of this marker for optimizing vaccination response

    mRNA-1273 COVID-19 vaccination in patients receiving chemotherapy, immunotherapy, or chemoimmunotherapy for solid tumours:a prospective, multicentre, non-inferiority trial

    Get PDF
    BACKGROUND: Patients with cancer have an increased risk of complications from SARS-CoV-2 infection. Vaccination to prevent COVID-19 is recommended, but data on the immunogenicity and safety of COVID-19 vaccines for patients with solid tumours receiving systemic cancer treatment are scarce. Therefore, we aimed to assess the impact of immunotherapy, chemotherapy, and chemoimmunotherapy on the immunogenicity and safety of the mRNA-1273 (Moderna Biotech, Madrid, Spain) COVID-19 vaccine as part of the Vaccination Against COVID in Cancer (VOICE) trial. METHODS: This prospective, multicentre, non-inferiority trial was done across three centres in the Netherlands. Individuals aged 18 years or older with a life expectancy of more than 12 months were enrolled into four cohorts: individuals without cancer (cohort A [control cohort]), and patients with solid tumours, regardless of stage and histology, treated with immunotherapy (cohort B), chemotherapy (cohort C), or chemoimmunotherapy (cohort D). Participants received two mRNA-1273 vaccinations of 100 μg in 0·5 mL intramuscularly, 28 days apart. The primary endpoint, analysed per protocol (excluding patients with a positive baseline sample [>10 binding antibody units (BAU)/mL], indicating previous SARS-CoV-2 infection), was defined as the SARS-CoV-2 spike S1-specific IgG serum antibody response (ie, SARS-CoV-2-binding antibody concentration of >10 BAU/mL) 28 days after the second vaccination. For the primary endpoint analysis, a non-inferiority design with a margin of 10% was used. We also assessed adverse events in all patients who received at least one vaccination, and recorded solicited adverse events in participants who received at least one vaccination but excluding those who already had seroconversion (>10 BAU/mL) at baseline. This study is ongoing and is registered with ClinicalTrials.gov, NCT04715438. FINDINGS: Between Feb 17 and March 12, 2021, 791 participants were enrolled and followed up for a median of 122 days (IQR 118 to 128). A SARS-CoV-2-binding antibody response was found in 240 (100%; 95% CI 98 to 100) of 240 evaluable participants in cohort A, 130 (99%; 96 to >99) of 131 evaluable patients in cohort B, 223 (97%; 94 to 99) of 229 evaluable patients in cohort C, and 143 (100%; 97 to 100) of 143 evaluable patients in cohort D. The SARS-CoV-2-binding antibody response in each patient cohort was non-inferior compared with cohort A. No new safety signals were observed. Grade 3 or worse serious adverse events occurred in no participants in cohort A, three (2%) of 137 patients in cohort B, six (2%) of 244 patients in cohort C, and one (1%) of 163 patients in cohort D, with four events (two of fever, and one each of diarrhoea and febrile neutropenia) potentially related to the vaccination. There were no vaccine-related deaths. INTERPRETATION: Most patients with cancer develop, while receiving chemotherapy, immunotherapy, or both for a solid tumour, an adequate antibody response to vaccination with the mRNA-1273 COVID-19 vaccine. The vaccine is also safe in these patients. The minority of patients with an inadequate response after two vaccinations might benefit from a third vaccination. FUNDING: ZonMw, The Netherlands Organisation for Health Research and Development

    An Explorative Biomarker Study for Vaccine Responsiveness after a Primary Meningococcal Vaccination in Middle-Aged Adults

    No full text
    IntroductionPrevention of infectious diseases in the elderly is essential to establish healthy aging. Yet, immunological aging impairs successful vaccination of the elderly. Predictive biomarkers for vaccine responsiveness in middle-aged adults may help to identify responders and non-responders before reaching old age. Therefore, we aimed to determine biomarkers associated with low and high responsiveness toward a primary vaccination in middle-aged adults, for which a tetravalent meningococcal vaccine was used as a model.MethodsMiddle-aged adults (50–65 years of age, N = 100), receiving a tetravalent meningococcal vaccination, were divided into low and high responders using the functional antibody titers at 28 days postvaccination. A total of 48 parameters, including absolute numbers of immune cells and serum levels of cytokines and biochemical markers, were determined prevaccination in all participants. Heat maps and multivariate redundancy analysis (RDA) were used to reveal immune phenotype characteristics and associations of the low and high responders.ResultsSeveral significant differences in prevaccination immune markers were observed between the low and high vaccine responders. Moreover, RDA analysis revealed a significant association between the prevaccination immune phenotype and vaccine responsiveness. In particular, our analysis pointed at high numbers of CD4 T cells, especially naïve CD4 and regulatory T subsets, to be associated with low vaccine responsiveness. In addition, low responders showed lower prevaccination IL-1Ra levels than high responders.ConclusionThis explorative biomarker study shows associations between the prevaccination immune phenotype and vaccine responsiveness after a primary meningococcal vaccination in middle-aged adults. Consequently, these results provide a basis for predictive biomarker discovery for vaccine responsiveness that will require validation in larger cohort studies
    corecore