115 research outputs found

    Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridges

    Get PDF
    The method of polarized fluorescence depletion (PFD) has been applied to enhance the resolution of orientational distributions and dynamics obtained from fluorescence polarization (FP) experiments on ordered systems, particularly in muscle fibers. Previous FP data from single fluorescent probes were limited to the 2nd- and 4th-rank order parameters, and , of the probe angular distribution (ß) relative to the fiber axis and , a coefficient describing the extent of rapid probe motions. We applied intense 12-µs polarized photoselection pulses to transiently populate the triplet state of rhodamine probes and measured the polarization of the ground-state depletion using a weak interrogation beam. PFD provides dynamic information describing the extent of motions on the time scale between the fluorescence lifetime (e.g., 4 ns) and the duration of the photoselection pulse and it potentially supplies information about the probe angular distribution corresponding to order parameters above rank 4. Gizzard myosin regulatory light chain (RLC) was labeled with the 6-isomer of iodoacetamidotetramethylrhodamine and exchanged into rabbit psoas muscle fibers. In active contraction, dynamic motions of the RLC on the PFD time scale were intermediate between those observed in relaxation and rigor. The results indicate that previously observed disorder of the light chain region in contraction can be ascribed principally to dynamic motions on the microsecond time scale

    High-dose intensity-modulated radiotherapy for prostate cancer using daily fiducial marker-based position verification: acute and late toxicity in 331 patients

    Get PDF
    We evaluated the acute and late toxicity after high-dose intensity-modulated radiotherapy (IMRT) with fiducial marker-based position verification for prostate cancer. Between 2001 and 2004, 331 patients with prostate cancer received 76 Gy in 35 fractions using IMRT combined with fiducial marker-based position verification. The symptoms before treatment (pre-treatment) and weekly during treatment (acute toxicity) were scored using the Common Toxicity Criteria (CTC). The goal was to score late toxicity according to the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer (RTOG/EORTC) scale with a follow-up time of at least three years. Twenty-two percent of the patients experienced pre-treatment grade ≥ 2 genitourinary (GU) complaints and 2% experienced grade 2 gastrointestinal (GI) complaints. Acute grade 2 GU and GI toxicity occurred in 47% and 30%, respectively. Only 3% of the patients developed acute grade 3 GU and no grade ≥ 3 GI toxicity occurred. After a mean follow-up time of 47 months with a minimum of 31 months for all patients, the incidence of late grade 2 GU and GI toxicity was 21% and 9%, respectively. Grade ≥ 3 GU and GI toxicity rates were 4% and 1%, respectively, including one patient with a rectal fistula and one patient with a severe hemorrhagic cystitis (both grade 4). In conclusion, high-dose intensity-modulated radiotherapy with fiducial marker-based position verification is well tolerated. The low grade ≥ 3 toxicity allows further dose escalation if the same dose constraints for the organs at risk will be used

    A multi-institutional analysis of a general pelvis continuous Hounsfield unit synthetic CT software for radiotherapy

    Get PDF
    Purpose To validate a synthetic computed tomography (sCT) software with continuous HUs and large field-of-view (FOV) coverage for magnetic resonance imaging (MRI)-only workflow of general pelvis anatomy in radiotherapy (RT).Methods An sCT software for general pelvis anatomy (prostate, rectum, and female pelvis) has been developed by Philips Healthcare and includes continuous HUs assignment along with large FOV coverage. General pelvis sCTs were generated using a two-stack T1-weighted mDixon fast-field echo (FFE) sequence with a superior-inferior coverage of 36 cm. Seventy-seven prostate, 43 rectum, and 27 gynecological cases were scanned by three different institutions. mDixon image quality and sCTs were evaluated for soft tissue contrast by using a confidence level scale from 1 to 5 for bladder, prostate/rectum interface, mesorectum, and fiducial maker visibility. Dosimetric comparison was performed by recalculating the RT plans on the sCT after rigid registration. For 12 randomly selected cases, the mean absolute error (MAE) between sCT and CT was calculated to evaluate HU similarity, and the Pearson correlation coefficients (PCC) between the CT- and sCT-generated digitally reconstructed radiographs (DRRs) were obtained for quantitative comparison. To examine geometric accuracy of sCT as a reference for cone beam CT (CBCT), the difference between bone-based alignment of CBCT to CT and CBCT to sCT was obtained for 19 online-acquired CBCTs from three patients.Results Two-stack mDixon scans with large FOV did not show any image inhomogeneity or fat-water swap artifact. Fiducials, Foley catheter, and even rectal spacer were visible as dark signal on the sCT. Average visibility confidence level (average +/- standard deviation) on the sCT was 5.0 +/- 0.0, 4.6 +/- 0.5, 3.8 +/- 0.4, and 4.0 +/- 1.1 for bladder, prostate/rectum interface, mesorectum and fiducial markers. Dosimetric accuracy showed on average < 1% difference with the CT-based plans for target and normal structures. The MAE of bone and soft tissue between the sCT and CT are 120.9 +/- 15.4 HU, 33.4 +/- 4.1 HU, respectively. Average PCC of all evaluated DRR pairs was 0.975. The average offset between CT and sCT as reference was (LR, AP, SI) = (0.19 +/- 0.35, 0.14 +/- 0.60, 0.44 +/- 0.54) mm.Conclusions The continuous HU sCT software-generated realistic sCTs and DRRs to enable MRI-only planning for general pelvis anatomy

    Single blind randomized Phase III trial to investigate the benefit of a focal lesion ablative microboost in prostate cancer (FLAME-trial): study protocol for a randomized controlled trial

    Get PDF
    Background: The treatment results of external beam radiotherapy for intermediate and high risk prostate cancer patients are insufficient with five-year biochemical relapse rates of approximately 35%. Several randomized trials have shown that dose escalation to the entire prostate improves biochemical disease free survival. However, further dose escalation to the whole gland is limited due to an unacceptable high risk of acute and late toxicity. Moreover, local recurrences often originate at the location of the macroscopic tumor, so boosting the radiation dose at the macroscopic tumor within the prostate might increase local control. A reduction of distant metastases and improved survival can be expected by reducing local failure. The aim of this study is to investigate the benefit of an ablative microboost to the macroscopic tumor within the prostate in patients treated with external beam radiotherapy for prostate cancer.Methods/Design: The FLAME-trial (Focal Lesion Ablative Microboost in prostatE cancer) is a single blind randomized controlled phase III trial. We aim to include 566 patients (283 per treatment arm) with intermediate or high risk adenocarcinoma of the prostate who are scheduled for external beam radiotherapy using fiducial markers for position verification. With this number of patients, the expected increase in five-year freedom from biochemical failure rate of 10% can be detected with a power of 80%. Patients allocated to the standard arm receive a dose of 77 Gy in 35 fractions to the entire prostate and patients in the experimental arm receive 77 Gy to the entire prostate and an additional integrated microboost to the macroscopic tumor of 95 Gy in 35 fractions. The secondary outcome measures include treatment-related toxicity, quality of life and disease-specific survival. Furthermore, by localizing the recurrent tumors within the prostate during follow-up and correlating this with the delivered dose, we can obtain accurate dose-effect information for both the macroscopic tumor and subclinical disease in prostate cancer. The rationale, study design and the first 50 patients included are described.Biological, physical and clinical aspects of cancer treatment with ionising radiatio

    Recommendations for implementing stereotactic radiotherapy in peripheral stage IA non-small cell lung cancer: report from the Quality Assurance Working Party of the randomised phase III ROSEL study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A phase III multi-centre randomised trial (ROSEL) has been initiated to establish the role of stereotactic radiotherapy in patients with operable stage IA lung cancer. Due to rapid changes in radiotherapy technology and evolving techniques for image-guided delivery, guidelines had to be developed in order to ensure uniformity in implementation of stereotactic radiotherapy in this multi-centre study.</p> <p>Methods/Design</p> <p>A Quality Assurance Working Party was formed by radiation oncologists and clinical physicists from both academic as well as non-academic hospitals that had already implemented stereotactic radiotherapy for lung cancer. A literature survey was conducted and consensus meetings were held in which both the knowledge from the literature and clinical experience were pooled. In addition, a planning study was performed in 26 stage I patients, of which 22 were stage 1A, in order to develop and evaluate the planning guidelines. Plans were optimised according to parameters adopted from RTOG trials using both an algorithm with a simple homogeneity correction (Type A) and a more advanced algorithm (Type B). Dose conformity requirements were then formulated based on these results.</p> <p>Conclusion</p> <p>Based on current literature and expert experience, guidelines were formulated for this phase III study of stereotactic radiotherapy versus surgery. These guidelines can serve to facilitate the design of future multi-centre clinical trials of stereotactic radiotherapy in other patient groups and aid a more uniform implementation of this technique outside clinical trials.</p

    A margin recipe for the management of intra-fraction target motion in radiotherapy

    No full text
    Background and purpose: Strategies to limit the impact of intra-fraction motion during treatment are common in radiotherapy. Margin recipes, however, are not designed to incorporate these strategies. This work aimed to provide a framework to determine how motion management strategies influence treatment margins. Materials and methods: Two models of intra-fraction motion were considered. In model 1 motion was instantaneous, before treatment starts and in model 2 motion was a continuous drift during treatment. Motion management strategies were modelled by truncating the underlying error distribution at cσ, with σ the standard deviation of the distribution and c a free parameter. Using Monte Carlo simulations, we determined how motion management changed the required margin. The analysis was performed for different number of treatment fractions and different standard deviations of the underlying random and systematic errors. Results: The required margin for a continuous drift was found to be well approximated by an average position of the target at ¾ of the drift. Introducing a truncation at cσ, the relative change in the margin was equal to 0.3c. This result held for both models, was independent of σ or the number of fractions and naturally generalizes to the situation with a residual (systematic) error. Conclusion: Treatment margins can be determined when motion management strategies are applied. Moreover, our analysis can be used to study the potential benefit of different motion management strategies. This allows to discuss and determine the most appropriate strategy for margin reduction

    Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridges.

    No full text
    Polarized fluorescence depletion reports orientation distribution and rotational dynamics of muscle cross-bridge
    • …
    corecore