4 research outputs found

    Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates

    No full text
    We present microwave-frequency NbTiN resonators on silicon, systematically achieving internal quality factors above 1?M in the quantum regime. We use two techniques to reduce losses associated with two-level systems: an additional substrate surface treatment prior to NbTiN deposition to optimize the metal-substrate interface and deep reactive-ion etching of the substrate to displace the substrate-vacuum interfaces away from high electric fields. The temperature and power dependence of resonator behavior indicate that two-level systems still contribute significantly to energy dissipation, suggesting that more interface optimization could further improve performance.QN/Quantum NanoscienceApplied Science

    Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions

    No full text
    Circuit quantum electrodynamics has proven to be a powerful tool to probe mesoscopic effects in hybrid systems and is used in several quantum computing (QC) proposals that require a transmon qubit able to operate in strong magnetic fields. To address this we integrate monolayer graphene Josephson junctions into microwave frequency superconducting circuits to create graphene based transmons. Using dispersive microwave spectroscopy we resolve graphene's characteristic band dispersion and observe coherent electronic interference effects confirming the ballistic nature of our graphene Josephson junctions. We show that the monoatomic thickness of graphene renders the device insensitive to an applied magnetic field, allowing us to perform energy level spectroscopy of the circuit in a parallel magnetic field of 1 T, an order of magnitude higher than previous studies. These results establish graphene based superconducting circuits as a promising platform for QC and the study of mesoscopic quantum effects that appear in strong magnetic fields.QRD/Kouwenhoven LabQuTechApplied SciencesQRD/Goswami La

    Magnetic-Field-Resilient Superconducting Coplanar-Waveguide Resonators for Hybrid Circuit Quantum Electrodynamics Experiments

    Get PDF
    Superconducting coplanar-waveguide resonators that can operate in strong magnetic fields are important tools for a variety of high-frequency superconducting devices. Magnetic fields degrade resonator performance by creating Abrikosov vortices that cause resistive losses and frequency fluctuations or suppress the superconductivity entirely. To mitigate these effects, we investigate lithographically defined artificial defects in resonators fabricated from Nb-Ti-N superconducting films. We show that by controlling the vortex dynamics, the quality factor of resonators in perpendicular magnetic fields can be greatly enhanced. Coupled with the restriction of the device geometry to enhance the superconductors critical field, we demonstrate stable resonances that retain quality factors ≃105 at the single-photon power level in perpendicular magnetic fields up to BùƠ„ ≃20mT and parallel magnetic fields up to Bù„ ≃6T. We demonstrate the effectiveness of this technique for hybrid systems by integrating an In-Sb nanowire into a field-resilient superconducting resonator and use it to perform fast charge readout of a gate-defined double quantum dot at B=1T.QRD/Kouwenhoven LabQuTechApplied SciencesBUS/GeneralQCD/DiCarlo LabQN/Kouwenhoven La

    Telecom-Band Quantum Interference of Frequency-Converted Photons from Remote Detuned NV Centers

    No full text
    Entanglement distribution over quantum networks has the promise of realizing fundamentally new technologies. Entanglement between separated quantum processing nodes has been achieved on several experimental platforms in the past decade. To move toward metropolitan-scale quantum network test beds, the creation and transmission of indistinguishable single photons over existing telecom infrastructure is key. Here, we report the interference of photons emitted by remote spectrally detuned NV-center-based network nodes, using quantum frequency conversion to the telecom L band. We find a visibility of 0.79±0.03 and an indistinguishability between converted NV photons around 0.9 over the full range of the emission duration, confirming the removal of the spectral information present. Our approach implements fully separated and independent control over the nodes, time multiplexing of control and quantum signals, and active feedback to stabilize the output frequency. Our results demonstrate a working principle that can be readily employed on other platforms and shows a clear path toward generating metropolitan-scale solid-state entanglement over deployed telecom fibers.QuTechQID/Hanson LabQN/vanderSarlabQID/Taminiau LabQID/Software GroupBUS/TNO STAFFQN/Hanson La
    corecore