215,951 research outputs found

    Interplay of air and sand: Faraday heaping unravelled

    Get PDF
    We report on numerical simulations of a vibrated granular bed including the effect of the ambient air, generating the famous Faraday heaps known from experiment. A detailed analysis of the forces shows that the heaps are formed and stabilized by the airflow through the bed while the gap between bed and vibrating bottom is growing, confirming the pressure gradient mechanism found experimentally by Thomas and Squires [Phys. Rev. Lett. 81, 574 (1998)], with the addition that the airflow is partly generated by isobars running parallel to the surface of the granular bed. Importantly, the simulations also explain the heaping instability of the initially flat surface and the experimentally observed coarsening of a number of small heaps into a larger one

    RTNN: The new parallel machine in Zaragoza

    Full text link
    I report on the development of RTNN, a parallel computer designed as a 4^4 hypercube of 256 T9000 transputer nodes, each with 8 MB memory. The peak performance of the machine is expected to be 2.5 Gflops.Comment: 10 pages PostScript, including 5 figures. Write-up (June 1995) of talk at the International Workshop ``QCD on Massively Parallel Computers'', Yamagata, Japan, 16-18 March 1995. To appear in the Proceedings, Suppl. Progr. Theor. Phys. (Kyoto

    Biofuel scenarios in a water perspective: the global blue and green water footprint of road transport in 2030

    Get PDF
    The trend towards substitution of conventional transport fuels by biofuels requires additional water. The EU aims In the last two centuries, fossil fuels have been our major source of energy. However, issues concerning energy security and the quality of the environment have given an impulse to the development of alternative, renewable fuels. Particularly the transport sector is expected to steadily switch from fossil fuels to a larger fraction of biofuels - liquid transport fuels derived from biomass. Many governments believe that biofuels can replace substantial volumes of crude oil and that they will play a key role in diversifying the sources of energy supply in the coming decades. The growth of biomass requires water, a scarce resource. The link between water resources and (future) biofuel consumption, however, has not been analyzed in great detail yet. Existing scenarios on the use of water resources usually only consider the changes in food and livestock production, industry and domestic activity. The aim of this research is to assess the change in water use related to the expected increase in the use of biofuels for road transport in 2030, and subsequently evaluate the contribution to potential water scarcity. The study builds on earlier research on the relation between energy and water and uses the water footprint (WF) methodology to investigate the change in water demand related to a transition to biofuels in road transport. Information about this transition in each country is based on a compilation of different energy scenarios. The study distinguishes between two different bio-energy carriers, bio-ethanol and biodiesel, and assesses the ratio of fuel produced from selected first-generation energy crops per country. For ethanol these crops are sugar cane, sugar beet, sweet sorghum, wheat and maize. For biodiesel they are soybean, rapeseed, jatropha, and oil palm

    Some views on monopoles and confinement

    Get PDF
    Aspects of the monopole condensation picture of confinement are discussed. First, the nature of the monopole singularities in the abelian projection approach is analysed. Their apparent gauge dependence is shown to have a natural interpretation in terms of 't~Hooft-Polyakov-like monopoles in euclidean SU(2) gauge theory. Next, the results and predictions of a realization of confinement through condensation of such monopoles are summarized and compared with numerical data.Comment: Talk at the International RCNP Workshop on COLOR CONFINEMENT AND HADRONS --- CONFINEMENT 95 (March 22--24, 1995, RCNP Osaka, Japan), to appear in the proceedings. 9 pages latex, 1 PostScript figure in uufiles format, uses epsf.te

    Electromagnons and instabilities in magnetoelectric materials with non-collinear spin orders

    Full text link
    We show that strong electromagnon peaks can be found in absorption spectra of non-collinear magnets exhibiting a linear magnetoelectric effect. The frequencies of these peaks coincide with the frequencies of antiferromagnetic resonances and the ratio of the spectral weights of the electromagnon and antiferromagnetic resonance is related to the ratio of the static magnetoelectric constant and magnetic susceptibility. Using a Kagome lattice antiferromagnet as an example, we show that frustration of spin ordering gives rise to magnetoelastic instabilities at strong spin-lattice coupling, which transform a non-collinear magnetoelectric spin state into a collinear multiferroic state with a spontaneous electric polarization and magnetization. The Kagome lattice antiferromagnet also shows a ferroelectric incommensurate-spiral phase, where polarization is induced by the exchange striction mechanism.Comment: 9 pages, 4 figure

    Residual entropy in a model for the unfolding of single polymer chains

    Full text link
    We study the unfolding of a single polymer chain due to an external force. We use a simplified model which allows to perform all calculations in closed form without assuming a Boltzmann-Gibbs form for the equilibrium distribution. Temperature is then defined by calculating the Legendre transform of the entropy under certain constraints. The application of the model is limited to flexible polymers. It exhibits a gradual transition from compact globule to rod. The boundary line between these two phases shows reentrant behavior. This behavior is explained by the presence of residual entropy.Comment: 5 pages, 4 figures, extended version of arXiv:cond-mat/061225

    A macroscopic model for sessile droplet evaporation on a flat surface

    Get PDF
    The evaporation of sessile droplets on a flat surface involves a complex interplay between phase change, diffusion, advection and surface forces. In an attempt to significantly reduce the complexity of the problem and to make it manageable, we propose a simple model hinged on a surface free energy-based relaxation dynamics of the droplet shape, a diffusive evaporation model and a contact line pinning mechanism governed by a yield stress. Our model reproduces the known dynamics of droplet shape relaxation and of droplet evaporation, both in the absence and in the presence of contact line pinning. We show that shape relaxation during evaporation significantly affects the lifetime of a drop. We find that the dependence of the evaporation time on the initial contact angle is a function of the competition between the shape relaxation and evaporation, and is strongly affected by any contact line pinning.Comment: 13 pages, 8 figure
    • 

    corecore