54 research outputs found

    Improved detection of fluorescently labeled microspheres and vessel architecture with an imaging cryomicrotome

    Get PDF
    Due to spectral overlap, the number of fluorescent labels for imaging cryomicrotome detection was limited to 4. The aim of this study was to increase the separation of fluorescent labels. In the new imaging cryomicrotome, the sample is cut in slices of 40 μm. Six images are taken for each cutting plane. Correction for spectral overlap is based on linear combinations of fluorescent images. Locations of microspheres are determined by using the system point spread function. Five differently colored microspheres were injected in vivo distributed over two major coronaries, the left anterior descending and left circumflex artery. Under absence of collateral flow, microspheres outside of target perfusion territories were not found and the procedure did not generate false positive detection when spectral overlap was relevant. In silico-generated microspheres were used to test the effect of background image, transparency correction, and color separation. The percentage of microspheres undetected was 2.3 ± 0.8% in the presence and 1.5 ± 0.4% in the absence of background structures with a density of 900 microspheres per color per cm3. The image analysis method presented here, allows for an increased number of experimental conditions that can be investigated in studies of regional myocardial perfusion

    Model prediction of subendocardial perfusion of the coronary circulation in the presence of an epicardial coronary artery stenosis

    Get PDF
    The subendocardium is most vulnerable to ischemia, which is ameliorated by relaxation during diastole and increased coronary pressure. Recent clinical techniques permit the measuring of subendocardial perfusion and it is therefore important to gain insight into how measurements depend on perfusion conditions of the heart. Using data from microsphere experiments a layered model of the myocardial wall was developed. Myocardial perfusion distribution during hyperemia was predicted for different degrees of coronary stenosis and at different levels of Diastolic Time Fraction (DTF). At the reference DTF, perfusion was rather evenly distributed over the layers and the effect of the stenosis was homogenous. However, at shorter or longer DTF, the subendocardium was the first or last to suffer from shortage of perfusion. It is therefore concluded that the possible occurrence of subendocardial ischemia at exercise is underestimated when heart rate is increased and DTF is lower

    Coronary microvascular resistance: methods for its quantification in humans

    Get PDF
    Coronary microvascular dysfunction is a topic that has recently gained considerable interest in the medical community owing to the growing awareness that microvascular dysfunction occurs in a number of myocardial disease states and has important prognostic implications. With this growing awareness, comes the desire to accurately assess the functional capacity of the coronary microcirculation for diagnostic purposes as well as to monitor the effects of therapeutic interventions that are targeted at reversing the extent of coronary microvascular dysfunction. Measurements of coronary microvascular resistance play a pivotal role in achieving that goal and several invasive and noninvasive methods have been developed for its quantification. This review is intended to provide an update pertaining to the methodology of these different imaging techniques, including the discussion of their strengths and weaknesses

    Pressure and Flow Relations in the Systemic Arterial Tree Throughout Development From Newborn to Adult

    Get PDF
    Objective: Distributed models of the arterial tree allow studying the effect of physiological and pathophysiological changes in the vasculature on hemodynamics. For the adult, several models exist; however, a model encompassing the full age range from newborn to adult was until now lacking. Our goal is to describe a complete distributed hemodynamic model for normal development from newborn to adult. Methods: The arterial system was modeled by 121 segments characterized by length, radius, wall thickness, wall stiffness, and wall viscosity. The final segments ended in three-element Windkessels. All parameters were adapted based on body height and weight as a function of age as described in the literature. Results: Pressures and flows are calculated as a function of age at sites along the arterial tree. Central to peripheral transfer functions are given. Our results indicate that peripheral pressure in younger children resembles central pressure. Furthermore, total arterial compliance, inertance and impedance are calculated. Findings indicate that the arterial tree can be simulated by using a three-element Windkessel system. Pulse wave velocity in the aorta was found to increase during development. Conclusions: The arterial system, modeled from newborn to adult bears clinical significance, both for the interpretation of peripheral measured pressure in younger and older children, and for using a Windkessel model to determine flow from pressure measurements

    Pressure and Flow Relations in the Systemic Arterial Tree Throughout Development From Newborn to Adult

    No full text
    Objective: Distributed models of the arterial tree allow studying the effect of physiological and pathophysiological changes in the vasculature on hemodynamics. For the adult, several models exist; however, a model encompassing the full age range from newborn to adult was until now lacking. Our goal is to describe a complete distributed hemodynamic model for normal development from newborn to adult. Methods: The arterial system was modeled by 121 segments characterized by length, radius, wall thickness, wall stiffness, and wall viscosity. The final segments ended in three-element Windkessels. All parameters were adapted based on body height and weight as a function of age as described in the literature. Results: Pressures and flows are calculated as a function of age at sites along the arterial tree. Central to peripheral transfer functions are given. Our results indicate that peripheral pressure in younger children resembles central pressure. Furthermore, total arterial compliance, inertance and impedance are calculated. Findings indicate that the arterial tree can be simulated by using a three-element Windkessel system. Pulse wave velocity in the aorta was found to increase during development. Conclusions: The arterial system, modeled from newborn to adult bears clinical significance, both for the interpretation of peripheral measured pressure in younger and older children, and for using a Windkessel model to determine flow from pressure measurements

    Location of a reflection site is elusive: consequences for the calculation of aortic pulse wave velocity

    No full text
    Aortic pulse wave velocity (PWV), a measure of aortic stiffness, is an important indicator of cardiovascular risk. Derivation of PWV from uncalibrated proximal aortic or carotid pressure alone has practical advantages. However, when the time of return of the reflected wave, (Delta)t, is used to calculate PWV, inaccurate data are obtained. With aging PWV increases but (Delta)t hardly decreases, suggesting that the reflection site moves toward the periphery. We hypothesized that the forward and reflected waves in the distal aorta are not in phase, leading to an undefined reflection site. We derived forward and backward waves, at the entrance and distal end of a uniform tube, with length "L." With the tube closed at the end, forward and reflected waves are there in phase, and PWV=2L/(Delta)t. When the tube is ended with the input impedance of the lower body, forward and backward waves at its end are not in phase, and (Delta)t is increased, suggesting that the reflection site is further away (tube seems longer), and PWV calculated from 2L/(Delta)t is underestimated. Using an anatomically accurate model of the human arterial system, we show that the forward and backward waves in the distal aorta are not in phase. When aortic PWV increases, (Delta)t changes only little, and the reflection site appears to move to the periphery, similar to what is observed in humans. We conclude that to define the location of a reflection site is elusive and that PWV cannot be calculated from time of return of the reflected wav

    Twin reversed arterial perfusion sequence is more common than generally accepted

    No full text
    Approximately 75% of monozygotic twin pregnancies share one monochorionic placenta where placental anastomoses are virtually always present to connect the two fetoplacental circulations. These anastomoses cause several serious complications such as acardiac twinning. Acardiac twins lack a functional heart but nevertheless show fetal growth because the normal pump twin perfuses the acardiac body through arterioarterial (AA) and venovenous (VV) anastomoses. The widely accepted 1% monochorionic acardiac incidence dates back to 1944 and the associated 1:35,000 pregnancies to 1953. Our aim was to update this analysis. We accepted the 1% (actually 1.1%) monochorionic acardiac incidence due to lack of more precise data, included the recently observed 58% early cessation of acardiac development as well as consequences of assisted reproductive technology, and assessed the incidence of acardiac twinning under conditions of AA-VV anastomoses. Early acardiac monochorionic twinning increased from 1.1% to 1.1/(1-0.58) = 2.6%, from 1:35,000 to 1:9,500 to 11,000 pregnancies, depending on number and method of assisted reproductive technology, and occurs in approximately 1:8 AA-VV anastomoses-containing monochorionic placentas. Early acardiac twinning is not a rare event. The 1944-based 1% acardiac monochorionic incidence has a weak basis and could therefore be (much) larger. Knowing this incidence more precisely may contribute to our knowledge of embryonic splitting in unequal cell masse

    Impact of Coronary Bifurcation Morphology on Wave Propagation

    Get PDF
    The branching pattern of the coronary vasculature is a key determinant of its function and plays a crucial role in shaping the pressure and velocity wave forms measured for clinical diagnosis. However, although multiple scaling laws have been proposed to characterize the branching pattern, the implications they have on wave propagation remain unassessed to date. To bridge this gap, we have developed a new theoretical framework by combining the mathematical formulation of scaling laws with the wave propagation theory in the pulsatile flow regime. This framework was then validated in multiple species using high-resolution cryomicrotome images of porcine, canine, and human coronary networks. Results demonstrate that the forward well-matchedness (no reflection for pressure/flow waves traveling from the coronary stem toward the microcirculation) is a salient feature in the coronary vasculature, and this result remains robust under many scenarios of the underlying pulse wave speed distribution assumed in the network. This result also implies a significant damping of the backward traveling waves, especially for smaller vessels (radius, <0.3 mm). Furthermore, the theoretical prediction of increasing area ratios (ratio between the area of the mother and daughter vessels) in more symmetric bifurcations found in the distal circulation was confirmed by experimental measurements. No differences were observed by clustering the vessel segments in terms of transmurality (from epicardium to endocardium) or perfusion territories (left anterior descending, left circumflex, and right coronary artery
    corecore