15 research outputs found

    Responses in knee joint muscle activation patterns to different perturbations during gait in healthy subjects

    Get PDF
    Purpose: To compare the responses in knee joint muscle activation patterns to different perturbations during gait in healthy subjects. Scope: Nine healthy participants were subjected to perturbed walking on a split-belt treadmill. Four perturbation types were applied, each at five intensities. The activations of seven muscles surrounding the knee were measured using surface EMG. The responses in muscle activation were expressed by calculating mean, peak, co-contraction (CCI) and perturbation responses (PR) values. PR captures the responses relative to unperturbed gait. Statistical parametric mapping analysis was used to compare the muscle activation patterns between conditions. Results: Perturbations evoked only small responses in muscle activation, though higher perturbation intensities yielded a higher mean activation in five muscles, as well as higher PR. Different types of perturbation led to different responses in the rectus femoris, medial gastrocnemius and lateral gastrocnemius. The participants had lower CCI just before perturbation compared to the same phase of unperturbed gait. Conclusions: Healthy participants respond to different perturbations during gait with small adaptations in their knee joint muscle activation patterns. This study provides insights in how the muscles are activated to stabilize the knee when challenged. Furthermore it could guide future studies in determining aberrant muscle activation in patients with knee disorders.Biomechatronics & Human-Machine Contro

    Neuromechanical assessment of knee joint instability during perturbed gait in patients with knee osteoarthritis

    Get PDF
    Knee joint instability is frequently reported by patients with knee osteoarthritis (KOA). Objective metrics to assess knee joint instability are lacking, making it difficult to target therapies aiming to improve stability. Therefore, the aim of this study was to compare responses in neuromechanics to perturbations during gait in patients with self-reported knee joint instability (KOA-I) versus patients reporting stable knees (KOA-S) and healthy control subjects. Forty patients (20 KOA-I and 20 KOA-S) and 20 healthy controls were measured during perturbed treadmill walking. Knee joint angles and muscle activation patterns were compared using statistical parametric mapping and discrete gait parameters. Furthermore, subgroups (moderate versus severe KOA) based on Kellgren and Lawrence classification were evaluated. Patients with KOA-I generally had greater knee flexion angles compared to controls during terminal stance and during swing of perturbed gait. In response to deceleration perturbations the patients with moderate KOA-I increased their knee flexion angles during terminal stance and pre-swing. Knee muscle activation patterns were overall similar between the groups. In response to sway medial perturbations the patients with severe KOA-I increased the co-contraction of the quadriceps versus hamstrings muscles during terminal stance. Patients with KOA-I respond to different gait perturbations by increasing knee flexion angles, co-contraction of muscles or both during terminal stance. These alterations in neuromechanics could assist in the assessment of knee joint instability in patients, to provide treatment options accordingly. Furthermore, longitudinal studies are needed to investigate the consequences of altered neuromechanics due to knee joint instability on the development of KOA.Biomechatronics & Human-Machine Contro

    How to compare knee kinetics at different walking speeds?

    Get PDF
    Background: Walking speed is a confounding factor in biomechanical analyses of gait, but still many studies compare gait biomechanics at comfortable walking speed (CWS) that is likely to differ between groups or conditions. To identify gait deviation unrelated to walking speed, methods are needed to correct biomechanical data over the gait cycle for walking speed. Research question: How to compare knee kinetics over the gait cycle at different walking speeds? Methods: 22 asymptomatic subjects walked on a dual-belt treadmill at CWS and 4 fixed speeds. Knee moments in sagittal (KFM) and frontal plane (KAM) were calculated via inverse dynamics. The net moment differences between CWS and fixed speed were expressed as a root-mean-square error (RMSE) normalized to the range of the variable. Two methods to correct for walking speed were compared. In method 1, KFM and KAM values were estimated based on interpolation between speeds at each percentage of the gait cycle. In method 2, principal component analysis was used to extract speed related features to reconstruct KFM and KAM at the speed of interest. The accuracy of both methods was tested using a leave-one-out cross validation. Results: Walking speed influenced the magnitude and shape of KFM and KAM. To account for these speed influences using both methods, leave-one-out cross validation showed low normalized RMSE (< 5 %), with little difference between the two methods. RMSE for both reconstruction methods were up to 60 % lower than the RMSE between CWS and fixed speed. Significance: Both methods could accurately correct knee kinetics over the gait cycle for the effects of walking speed. Walking speed dependency should be incorporated in each gait laboratory's reference dataset to be able to identify gait deviations unrelated to gait speed.Biomechatronics & Human-Machine Contro

    The learning process of gait retraining using real-time feedback in patients with medial knee osteoarthritis

    No full text
    The objective of this study was to investigate the learning process of knee osteoarthritis (KOA) patients learning to change their foot progression angle (FPA) over a six-week toe-in gait training program. Sixteen patients with medial KOA completed a six-week toe-in gait training program with real-time biofeedback. Patients walked on an instrumented treadmill while receiving real-time feedback on their foot progression angle (FPA) with reference to a target angle. The FPA difference (difference between target and actual FPA) was analyzed during i) natural walking, ii) walking with feedback, iii) walking without feedback and iv) walking with a dual-task at the start and end of the training program. Self-reported difficulty and abnormality and time spent walking and training were also analyzed. The FPA difference during natural walking was significantly decreased from median 6.9 to median 3.6° i.e. by 3.3° in week six (p < 0.001); adding feedback reduced FPA difference to almost zero. However the dual-task condition increased the FPA difference at week one compared to the feedback condition (median difference: 1.8°, p = 0.022), but after training this effect was minimized (median difference: 0.6°, p = 0.167). Self-reported abnormality and difficulty decreased from median 5 to 3 and from median 6 to 3 on the NRS respectively (p < 0.05). Patients with medial KOA could reduce the FPA difference during natural walking after the gait retraining program, with some evidence of a reduction in the cognitive demand needed to achieve this. Automation of adaptions might need support from more permanent feedback using wearable technologies.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine Contro

    Objective parameters to measure (in)stability of the knee joint during gait: A review of literature

    No full text
    Background: Instability of the knee joint during gait is frequently reported by patients with knee osteoarthritis or an anterior cruciate ligament rupture. The assessment of instability in clinical practice and clinical research studies mainly relies on self-reporting. Alternatively, parameters measured with gait analysis have been explored as suitable objective indicators of dynamic knee (in)stability. Research question: This literature review aimed to establish an inventory of objective parameters of knee stability during gait. Methods: Five electronic databases (Pubmed, Embase, Cochrane, Cinahl and SPORTDiscuss) were systematically searched, with keywords concerning knee, stability and gait. Eligible studies used an objective parameter(s) to assess knee (in)stability during gait, being stated in the introduction or methods section. Out of 10717 studies, 89 studies were considered eligible. Results: Fourteen different patient populations were investigated with kinematic, kinetic and/or electromyography measurements during (challenged) gait. Thirty-three possible objective parameters were identified for knee stability, of which the majority was based on kinematic (14 parameters) or electromyography (12 parameters) measurements. Thirty-nine studies used challenged gait (i.e. external perturbations, downhill walking) to provoke knee joint instability. Limited or conflicting results were reported on the validity of the 33 parameters. Significance: In conclusion, a large number of different candidates for an objective knee stability gait parameter were found in literature, all without compelling evidence. A clear conceptual definition for dynamic knee joint stability is lacking, for which we suggest : “The capacity to respond to a challenge during gait within the natural boundaries of the knee”. Furthermore biomechanical gait laboratory protocols should be harmonized, to enable future developments on clinically relevant measure(s) of knee stability during gait.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine Contro

    Marker placement sensitivity of the Oxford and Rizzoli foot models in adults and children

    Get PDF
    Understanding the effect of individual marker misplacements is important to improve the repeatability and aid to the interpretation of multi-segment foot models like the Oxford and Rizzoli Foot Models (OFM, RFM). Therefore, this study aimed to quantify the effect of controlled anatomical marker misplacement on multi-segment foot kinematics (i.e. marker placement sensitivity) as calculated by OFM and RFM in a range of foot sizes. Ten healthy adults and nine children were included. A combined OFM and RFM marker set was placed on their right foot and a static standing trial was collected. Each marker was replaced ± 10 mm in steps of 1 mm over the three axes of a foot coordinate system. For each replacement the change in segment orientation (tibia, hindfoot, midfoot, forefoot) was calculated with respect to the reference pose in which no markers were replaced. A linear fit was made to calculate the sensitivity of segment orientation to marker misplacement in °/mm. Additionally, the effect of foot size on the sensitivity was determined using linear regressions. For every foot segment of both models, at least one marker had a sensitivity ≥ 1.0°/mm. Highest values were found for the markers at the posterior aspect of the calcaneus in OFM (1.5°/mm) and the basis of the second metatarsal in RFM (1.4°/mm). Foot size had a small effect on 40% of the sensitivity values. This study identified markers of which consistent placement is critical to prevent clinically relevant errors (>5°). For more repeatable multi-segment models, the role of these markers within the models’ definitions needs to be reconsidered.Biomechatronics & Human-Machine Contro

    Effect of real-time biofeedback on peak knee adduction moment in patients with medial knee osteoarthritis: Is direct feedback effective?

    No full text
    Background: Gait modifications can reduce the knee adduction moment, a representation of knee loading. Reduced loading may help to slow progression of medial knee osteoarthritis. We aimed to investigate the response of patients with medial knee osteoarthritis to direct feedback on the knee adduction moment as a method for modifying the gait pattern, before and after training with specific gait modifications. Methods: Forty patients with medial knee osteoarthritis underwent 3D gait analysis on an instrumented-treadmill, while receiving real-time feedback on the peak knee adduction moment. Patients were trained with three different modifications; toe-in, wider steps and medial thrust gait. The response to real-time feedback on the knee adduction moment was measured before and after training. To evaluate the short term retention effect, we measured the changes without feedback. We also evaluated the effects on the knee flexion moment and at the hip and ankle joints. Findings: With direct feedback on the knee adduction moment, patients were initially unable to reduce the knee adduction moment. After training with specific modifications, peak knee adduction moment was reduced by 14% in response to direct feedback. Without feedback a 9% reduction in peak knee adduction moment was maintained. Hip moments were not increased with modified gait, but small increases in ankle adduction moment and knee flexion moment were observed. Interpretation: Real-time biofeedback directly on the knee adduction moment is a promising option for encouraging gait modifications to reduce knee loading, however only when combined with specific instructions on how to modify the gait.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine Contro

    Limited knee extension during gait after total knee arthroplasty is related to a low Oxford Knee Score

    No full text
    Background: After total knee replacement (TKR) some patients report low self-perceived function, which is clinically measured using patient reported outcome measures (PROMs). However, PROMs, e.g. the Oxford Knee Score (OKS), inherently lack objective parameters of knee function. Biomechanical gait analysis is an objective and reliable measurement to quantitatively assess joint function. Therefore, the aim of this study was to explore the relationship between biomechanical gait parameters and the OKS. Methods: Gait analyses were recorded in 37 patients at least one year after primary TKR and in 24 healthy controls. Parameters from this analysis were calculated for hip, knee and ankle joint angles and joint moments in the sagittal and frontal plane including initial contact, early, late stance and swing. For the patients these parameters were expressed as its difference to control values at matched walking speed. Linear regression analyses were performed between the parameters from gait analysis and the OKS, with speed as covariate. Results: The difference in knee extension angle at initial contact and late stance between patients and controls was significantly related to the OKS. Per one degree knee extension difference increase, the OKS reduced with 1.0 to 1.6 points. Overall, patients extended their knee less than controls. Neither ankle and hip gait parameters, nor joint moments showed a relation with OKS. Conclusions: All patients with a submaximal score on the OKS showed limited knee extension during gait, even without a mechanical constraint in knee extension. This could be related to motor control limitations in this patient group.Biomechatronics & Human-Machine Contro

    The Amsterdam Foot Model: a clinically informed multi-segment foot model developed to minimize measurement errors in foot kinematics

    No full text
    Background: Foot and ankle joint kinematics are measured during clinical gait analyses with marker-based multi-segment foot models. To improve on existing models, measurement errors due to soft tissue artifacts (STAs) and marker misplacements should be reduced. Therefore, the aim of this study is to define a clinically informed, universally applicable multi-segment foot model, which is developed to minimize these measurement errors. Methods: The Amsterdam foot model (AFM) is a follow-up of existing multi-segment foot models. It was developed by consulting a clinical expert panel and optimizing marker locations and segment definitions to minimize measurement errors. Evaluation of the model was performed in three steps. First, kinematic errors due to STAs were evaluated and compared to two frequently used foot models, i.e. the Oxford and Rizzoli foot models (OFM, RFM). Previously collected computed tomography data was used of 15 asymptomatic feet with markers attached, to determine the joint angles with and without STAs taken into account. Second, the sensitivity to marker misplacements was determined for AFM and compared to OFM and RFM using static standing trials of 19 asymptomatic subjects in which each marker was virtually replaced in multiple directions. Third, a preliminary inter- and intra-tester repeatability analysis was performed by acquiring 3D gait analysis data of 15 healthy subjects, who were equipped by two testers for two sessions. Repeatability of all kinematic parameters was assessed through analysis of the standard deviation (σ) and standard error of measurement (SEM). Results: The AFM was defined and all calculation methods were provided. Errors in joint angles due to STAs were in general similar or smaller in AFM (≤2.9°) compared to OFM (≤4.0°) and RFM (≤6.7°). AFM was also more robust to marker misplacement than OFM and RFM, as a large sensitivity of kinematic parameters to marker misplacement (i.e. > 1.0°/mm) was found only two times for AFM as opposed to six times for OFM and five times for RFM. The average intra-tester repeatability of AFM angles was σ:2.2[0.9°], SEM:3.3 ± 0.9° and the inter-tester repeatability was σ:3.1[2.1°], SEM:5.2 ± 2.3°. Conclusions: Measurement errors of AFM are smaller compared to two widely-used multi-segment foot models. This qualifies AFM as a follow-up to existing foot models, which should be evaluated further in a range of clinical application areas.Biomechatronics & Human-Machine Contro

    A most painful knee does not induce interlimb differences in knee and hip moments during gait in patients with knee osteoarthritis

    No full text
    Background: Patients with knee osteoarthritis can adapt their gait to unload the most painful knee joint in order to try to reduce pain and improve physical function. However, these gait adaptations can cause higher loads on the contralateral joints. The aim of the study was to investigate the interlimb differences in knee and hip frontal plane moments during gait in patients with knee osteoarthritis and in healthy controls. Methods: Forty patients with knee osteoarthritis and 19 healthy matched controls were measured during comfortable treadmill walking. Frontal plane joint moments were obtained of both hip and knee joints. Differences in interlimb moments within each group were assessed using statistical parametric mapping and discrete gait parameters. Findings: No interlimb differences were observed in patients with knee osteoarthritis and control subjects at group level. Furthermore, the patients presented similar interlimb variability as the controls. In a small subgroup (n = 12) of patients, the moments in the most painful knee were lower than in the contralateral knee, while the other patients (n = 28) showed higher moments in the most painful knee compared to the contralateral knee. However, no interlimb differences in the hip moments were observed within the subgroups. Interpretation: Patients with knee osteoarthritis do not have interlimb differences in knee and hip joint moments. Patients and healthy subjects demonstrate a similar interlimb variability in the moments of the lower extremities. In this context, differences in knee pain in patients with knee osteoarthritis did not induce any interlimb differences in the frontal plane knee and hip moments.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Biomechatronics & Human-Machine Contro
    corecore