35 research outputs found

    Impact of Swarm GPS receiver updates on POD performance

    Get PDF
    The Swarm satellites are equipped with state-of-the-art Global Positioning System (GPS) receivers, which are used for the precise geolocation of the magnetic and electric field instruments, as well as for the determination of the Earth’s gravity field, the total electron content and low-frequency thermospheric neutral densities. The onboard GPS receivers deliver high-quality data with an almost continuous data rate. However, the receivers show a slightly degraded performance when flying over the geomagnetic poles and the geomagnetic equator, due to ionospheric scintillation. Furthermore, with only eight channels available for dual-frequency tracking, the amount of collected GPS tracking data is relatively low compared with various other missions. Therefore, several modifications have been implemented to the Swarm GPS receivers. To optimise the amount of collected GPS data, the GPS antenna elevation mask has slowly been reduced from 10° to 2°. To improve the robustness against ionospheric scintillation, the bandwidths of the GPS receiver tracking loops have been widened. Because these modifications were first implemented on Swarm- C, their impact can be assessed by a comparison with the close flying Swarm-A satellite. This shows that both modifications have a positive impact on the GPS receiver performance. The reduced elevation mask increases the amount of GPS tracking data by more than 3 %, while the updated tracking loops lead to around 1.3 % more observations and a significant reduction in tracking losses due to severe equatorial scintillation. The additional observations at low elevation angles increase the average noise of the carrier phase observations, but nonetheless slightly improve the resulting reduced-dynamic and kinematic orbit accuracy as shown by independent satellite laser ranging (SLR) validation. The more robust tracking loops significantly reduce the large carrier phase observation errors at the geomagnetic poles and along the geomagnetic equator and do not degrade the observations at midlatitudes. SLR validation indicates that the updated tracking loops also improve the reduced-dynamic and kinematic orbit accuracy. It is expected that the Swarm gravity field recovery will benefit from the improved kinematic orbit quality and potentially also from the expected improvement of the kinematic baseline determination and the anticipated reduction in the systematic gravity field errors along the geomagnetic equator. Finally, other satellites that carry GPS receivers that encounter similar disturbances might also benefit from this analysis

    GPS-derived orbits for the GOCE satellite

    Get PDF
    The first ESA (European Space Agency) Earth explorer core mission GOCE (Gravity field and steady-state Ocean Circulation Explorer) was launched on 17 March 2009 into a sun-synchronous dusk-dawn orbit with an exceptionally low initial altitude of about 280km. The onboard 12-channel dual-frequency GPS (Global Positioning System) receiver delivers 1Hz data, which provides the basis for precise orbit determination (POD) for such a very low orbiting satellite. As part of the European GOCE Gravity Consortium the Astronomical Institute of the University of Bern and the Department of Earth Observation and Space Systems are responsible for the orbit determination of the GOCE satellite within the GOCE High-level Processing Facility. Both quick-look (rapid) and very precise orbit solutions are produced with typical latencies of 1day and 2 weeks, respectively. This article summarizes the special characteristics of the GOCE GPS data, presents POD results for about 2months of data, and shows that both latency and accuracy requirements are met. Satellite Laser Ranging validation shows that an accuracy of 4 and 7cm is achieved for the reduced-dynamic and kinematic Rapid Science Orbit solutions, respectively. The validation of the reduced-dynamic and kinematic Precise Science Orbit solutions is at a level of about 2c

    GPS-only gravity field determination from GOCE data

    Get PDF
    The Gravity field and steady-state Ocean Circulation Explorer (GOCE) is now in orbit for more than four years. This is longer than the originally planned lifetime of the satellite and after three years on the same altitude the satellite has been lowered to 235 km in several steps. In the frame of the GOCE High-level Processing Facility the Astronomical Institute of the University of Bern (AIUB) is responsible for the determination of the official Precise Science Orbit (PSO) product. Kinematic GOCE orbits are part of this product and are used by several institutions in- and outside the HPF for determining the low degrees of the Earth’s gravity field. AIUB GOCE GPS-only gravity field solutions using the Celestial Mechanics Approach and covering the Release 4 period as well as a more recent time interval at the lower orbit altitude are shown and discussed. Special attention is paid to the impact of systematic deficiencies in the kinematic orbits on the resulting gravity fields, e.g., related to the geomagnetic equator, and on possibilities to get rid of them

    Swarm accelerometer data processing from raw accelerations to thermospheric neutral densities

    Get PDF
    The Swarm satellites were launched on November 22, 2013, and carry accelerometers and GPS receivers as part of their scientific payload. The GPS receivers do not only provide the position and time for the magnetic field measurements, but are also used for determining non-gravitational forces like drag and radiation pressure acting on the spacecraft. The accelerometers measure these forces directly, at much finer resolution than the GPS receivers, from which thermospheric neutral densities can be derived. Unfortunately, the acceleration measurements suffer from a variety of disturbances, the most prominent being slow temperature-induced bias variations and sudden bias changes. In this paper, we describe the new, improved four-stage processing that is applied for transforming the disturbed acceleration measurements into scientifically valuable thermospheric neutral densities. In the first stage, the sudden bias changes in the acceleration measurements are manually removed using a dedicated software tool. The second stage is the calibration of the accelerometer measurements against the non-gravitational accelerations derived from the GPS receiver, which includes the correction for the slow temperature-induced bias variations. The identification of validity periods for calibration and correction parameters is part of the second stage. In the third stage, the calibrated and corrected accelerations are merged with the non-gravitational accelerations derived from the observations of the GPS receiver by a weighted average in the spectral domain, where the weights depend on the frequency. The fourth stage consists of transforming the corrected and calibrated accelerations into thermospheric neutral densities. We present the first results of the processing of Swarm C acceleration measurements from June 2014 to May 2015. We started with Swarm C because its acceleration measurements contain much less disturbances than those of Swarm A and have a higher signal-to-noise ratio than those of Swarm B. The latter is caused by the higher altitude of Swarm B as well as larger noise in the acceleration measurements of Swarm B. We show the results of each processing stage, highlight the difficulties encountered, and comment on the quality of the thermospheric neutral density data set.Astrodynamics & Space Mission

    TOLEOS: Thermosphere Observations from Low-Earth Orbiting Satellites

    Get PDF
    The objective of the TOLEOS project is to process the CHAMP, GRACE, and GRACE-FO accelerometer measurements with improved processing standards to obtain thermosphere density and crosswind data products. These new data products will cover the entirety of the accelerometer missions and complement the existing ESA databases for Swarm and GOCE. The improvements in the processing focus on the radiation pressure modelling, which is expected to have a significant effect on the density and crosswind data, in particular at altitudes above 450 km during solar minimum conditions. Substantial validation activities are performed since the project’s start in June 2021 and will continue until the end of the project in July 2022

    Preliminary Validation of Thermosphere Observations from the TOLEOS Project

    Get PDF
    OBSERVATIONS of upper atmospheric neutral mass density (NMD) and wind are critical to understand the coupling mechanisms between Earth’s ionosphere, thermosphere, and magnetosphere. The ongoing Swarm DISC (data, innovation, and science cluster) project TOLEOS (thermosphere observations from low-Earth orbiting satellites) aims to provide better calibrated NMD and crosswind data from CHAMP, GRACE, and GRACE-FO (follow-on) satellite missions. The project uses state-of-the-art models, calibration techniques, and processing standards to improve the accuracy of these data products and ensure inter-mission consistency. Here, we present preliminary results of the quality of the data in comparison to the high accuracy drag temperature model DTM2020, and physics-based TIE-GCM (thermosphere ionosphere electrodynamics general circulation model) and CTIPe (coupled thermosphere ionosphere plasmasphere electrodynamics) models
    corecore