10 research outputs found

    Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs

    No full text
    Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out mice, often by means of quantitative reversed-transcriptase PCR (RT-qPCR). A precondition of such analyses is that so-called reference genes are stably expressed regardless of changes in disease status or treatment. In this study, the expression of six frequently used reference genes, namely, tata box binding protein (tbp), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (ywhaz), hydroxymethylbilane synthase (hmbs), beta-2-microglobulin (b2m), succinate dehydrogenase complex subunit A (sdha), and glyceraldehyde 3 phosphate dehydrogenase 1 (gapdh), was studied in pituitary tissue (normal and adenoma) from three species (humans, mice, and dogs). The stability of expression of these reference genes differed between species and between healthy and diseased tissue within one species. Quantitative analysis based on a single reference gene that is assumed to be stably expressed might lead to wrong conclusions. This cross-species analysis clearly emphasizes the need to evaluate the expression stability of reference genes as a standard and integral aspect of study design and data analysis, in order to improve the validity of the conclusions drawn on the basis of quantitative molecular analyses

    Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs

    No full text
    Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out mice, often by means of quantitative reversed-transcriptase PCR (RT-qPCR). A precondition of such analyses is that so-called reference genes are stably expressed regardless of changes in disease status or treatment. In this study, the expression of six frequently used reference genes, namely, tata box binding protein (tbp), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (ywhaz), hydroxymethylbilane synthase (hmbs), beta-2-microglobulin (b2m), succinate dehydrogenase complex subunit A (sdha), and glyceraldehyde 3 phosphate dehydrogenase 1 (gapdh), was studied in pituitary tissue (normal and adenoma) from three species (humans, mice, and dogs). The stability of expression of these reference genes differed between species and between healthy and diseased tissue within one species. Quantitative analysis based on a single reference gene that is assumed to be stably expressed might lead to wrong conclusions. This cross-species analysis clearly emphasizes the need to evaluate the expression stability of reference genes as a standard and integral aspect of study design and data analysis, in order to improve the validity of the conclusions drawn on the basis of quantitative molecular analyses

    Odds ratios for increasing degree of atherosclerosis (control, subclinical atherosclerosis, symptomatic peripheral arterial disease) by 1 unit increase of skin autofluorescence (Skin AF).

    No full text
    <p>Model 1 was only corrected for age, sex, diabetes mellitus and renal function. In model 2, we corrected additionally for cardiovascular risk factors as Framingham risk score. Model 3 was corrected for age, sex, renal function and metabolic syndrome.</p

    Molecular Characterization Reveals Subclasses of 1q Gain in Intermediate Risk Wilms Tumors

    No full text
    Chromosomal alterations have recurrently been identified in Wilms tumors (WTs) and some are associated with poor prognosis. Gain of 1q (1q+) is of special interest given its high prevalence and is currently actively studied for its prognostic value. However, the underlying mutational mechanisms and functional effects remain unknown. In a national unbiased cohort of 30 primary WTs, we integrated somatic SNVs, CNs and SVs with expression data and distinguished four clusters characterized by affected biological processes: muscle differentiation, immune system, kidney development and proliferation. Combined genome-wide CN and SV profiles showed that tumors profoundly differ in both their types of 1q+ and genomic stability and can be grouped into WTs with co-occurring 1p&minus;/1q+, multiple chromosomal gains or CN neutral tumors. We identified 1q+ in eight tumors that differ in mutational mechanisms, subsequent rearrangements and genomic contexts. Moreover, 1q+ tumors were present in all four expression clusters reflecting activation of various biological processes, and individual tumors overexpress different genes on 1q. In conclusion, by integrating CNs, SVs and gene expression, we identified subgroups of 1q+ tumors reflecting differences in the functional effect of 1q gain, indicating that expression data is likely needed for further risk stratification of 1q+ WTs
    corecore