16 research outputs found

    Mitral Valve Coaptation Reserve Index:A Model to Localize Individual Resistance to Mitral Regurgitation Caused by Annular Dilation

    Get PDF
    Objectives: The objective of this study was to develop a mathematical model for mitral annular dilatation simulation and determine its effects on the individualized mitral valve (MV) coaptation reserve index (CRI). Design: A retrospective analysis of intraoperative transesophageal 3-dimensionalechocardiographic MV datasets was performed. A mathematical model was created to assess the mitral CRI for each leaflet segment (A1-P1, A2-P2, A3-P3). Mitral CRI was defined as the ratio between the coaptation reserve (measured coaptation length along the closure line) and an individualized correction factor. Indexing was chosen to correct for MV sphericity and area of largest valve opening. Mathematical models were created to simulate progressive mitral annular dilatation and to predict the effect on the individual mitral CRI. Setting: At a single-center academic hospital. Participants: Twenty-five patients with normally functioning MVs undergoing cardiac surgery. Interventions: None. Measurements and Main Results: Direct measurement of leaflet coaptation along the closure line showed the lowest amount of coaptation (reserve) near the commissures (A1-P1 0.21 ± 0.05 cm and A3-P3 0.22 ± 0.06 cm), and the highest amount of coaptation (reserve) at region A2 to P2 0.25 ± 0.06 cm. After indexing, the A2-to-P2 region was the area with the lowest CRI in the majority of patients, and also the area with the least resistance to mitral regurgitation (MR) occurrence after simulation of progressive annular dilation. Conclusions: Quantification and indexing of mitral coaptation reserve along the closure line are feasible. Indexing and mathematical simulation of progressive annular dilatation consistently showed that indexed coaptation reserve was lowest in the A2-to-P2 region. These results may explain why this area is prone to lose coaptation and is often affected in MR

    Intracoronary versus intravenous abciximab in ST-segment elevation myocardial infarction: rationale and design of the CICERO trial in patients undergoing primary percutaneous coronary intervention with thrombus aspiration

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Administration of abciximab during primary percutaneous coronary intervention is an effective adjunctive therapy in the treatment of patients with ST-segment elevation myocardial infarction. Recent small-scaled studies have suggested that intracoronary administration of abciximab during primary percutaneous coronary intervention is superior to conventional intravenous administration. This study has been designed to investigate whether intracoronary bolus administration of abciximab is more effective than intravenous bolus administration in improving myocardial perfusion in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with thrombus aspiration.</p> <p>Methods/Design</p> <p>The Comparison of IntraCoronary versus intravenous abciximab administration during Emergency Reperfusion Of ST-segment elevation myocardial infarction (CICERO) trial is a single-center, prospective, randomized open-label trial with blinded evaluation of endpoints. A total of 530 patients with STEMI undergoing primary percutaneous coronary intervention are randomly assigned to either an intracoronary or intravenous bolus of weight-adjusted abciximab. The primary end point is the incidence of >70% ST-segment elevation resolution. Secondary end points consist of post-procedural residual ST-segment deviation, myocardial blush grade, distal embolization, enzymatic infarct size, in-hospital bleeding, and clinical outcome at 30 days and 1 year.</p> <p>Discussion</p> <p>The CICERO trial is the first clinical trial to date to verify the effect of intracoronary versus intravenous administration of abciximab on myocardial perfusion in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention with thrombus aspiration.</p> <p>Trial registration</p> <p>ClinicalTrials.gov NCT00927615</p

    The effect of electrical neurostimulation on collateral perfusion during acute coronary occlusion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electrical neurostimulation can be used to treat patients with refractory angina, it reduces angina and ischemia. Previous data have suggested that electrical neurostimulation may alleviate myocardial ischaemia through increased collateral perfusion. We investigated the effect of electrical neurostimulation on functional collateral perfusion, assessed by distal coronary pressure measurement during acute coronary occlusion. We sought to study the effect of electrical neurostimulation on collateral perfusion.</p> <p>Methods</p> <p>Sixty patients with stable angina and significant coronary artery disease planned for elective percutaneous coronary intervention were split in two groups. In all patients two balloon inflations of 60 seconds were performed, the first for balloon dilatation of the lesion (first episode), the second for stent delivery (second episode). The Pw/Pa ratio (wedge pressure/aortic pressure) was measured during both ischaemic episodes. Group 1 received 5 minutes of active neurostimulation before plus 1 minute during the first episode, group 2 received 5 minutes of active neurostimulation before plus 1 minute during the second episode.</p> <p>Results</p> <p>In group 1 the Pw/Pa ratio decreased by 10 ± 22% from 0.20 ± 0.09 to 0.19 ± 0.09 (p = 0.004) when electrical neurostimulation was deactivated. In group 2 the Pw/Pa ratio increased by 9 ± 15% from 0.22 ± 0.09 to 0.24 ± 0.10 (p = 0.001) when electrical neurostimulation was activated.</p> <p>Conclusion</p> <p>Electrical neurostimulation induces a significant improvement in the Pw/Pa ratio during acute coronary occlusion.</p

    Mitral Valve Coaptation Reserve Index: A Model to Localize Individual Resistance to Mitral Regurgitation Caused by Annular Dilation

    No full text
    Objectives: The objective of this study was to develop a mathematical model for mitral annular dilatation simulation and determine its effects on the individualized mitral valve (MV) coaptation reserve index (CRI). Design: A retrospective analysis of intraoperative transesophageal 3-dimensionalechocardiographic MV datasets was performed. A mathematical model was created to assess the mitral CRI for each leaflet segment (A1-P1, A2-P2, A3-P3). Mitral CRI was defined as the ratio between the coaptation reserve (measured coaptation length along the closure line) and an individualized correction factor. Indexing was chosen to correct for MV sphericity and area of largest valve opening. Mathematical models were created to simulate progressive mitral annular dilatation and to predict the effect on the individual mitral CRI. Setting: At a single-center academic hospital. Participants: Twenty-five patients with normally functioning MVs undergoing cardiac surgery. Interventions: None. Measurements and Main Results: Direct measurement of leaflet coaptation along the closure line showed the lowest amount of coaptation (reserve) near the commissures (A1-P1 0.21 ± 0.05 cm and A3-P3 0.22 ± 0.06 cm), and the highest amount of coaptation (reserve) at region A2 to P2 0.25 ± 0.06 cm. After indexing, the A2-to-P2 region was the area with the lowest CRI in the majority of patients, and also the area with the least resistance to mitral regurgitation (MR) occurrence after simulation of progressive annular dilation. Conclusions: Quantification and indexing of mitral coaptation reserve along the closure line are feasible. Indexing and mathematical simulation of progressive annular dilatation consistently showed that indexed coaptation reserve was lowest in the A2-to-P2 region. These results may explain why this area is prone to lose coaptation and is often affected in MR

    The effect of electrical neurostimulation on collateral perfusion during acute coronary occlusion-0

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "The effect of electrical neurostimulation on collateral perfusion during acute coronary occlusion"</p><p>http://www.biomedcentral.com/1471-2261/7/18</p><p>BMC Cardiovascular Disorders 2007;7():18-18.</p><p>Published online 27 Jun 2007</p><p>PMCID:PMC1925118.</p><p></p>deviation. Pw/Pa ratio = pressure distal to inflated balloon/aortic pressure

    Gestational Restraint Stress and the Developing Dopaminergic System: An Overview

    No full text
    corecore