84 research outputs found

    Assessing the efficiency of Laser-Induced Breakdown Spectroscopy (LIBS) based sorting of post-consumer aluminium scrap

    Get PDF
    The aluminium Twitch fraction of a Belgian recycling facility could be further sorted by implementing Laser-Induced Breakdown Spectroscopy (LIBS). To achieve this goal, the presented research identifies commercially interesting output fractions and investigates machine learning methods to classify the post-consumer aluminium scrap samples based on the spectral data collected by the LIBS sensor for 834 aluminium scrap pieces. The classification performance is assessed with X-Ray Fluorescence (XRF) reference measurements of the investigated aluminium samples, and expressed in terms of accuracy, precision, recall, and f1 score. Finally, the influence of misclassifications on the composition of the desired output fractions is evaluated.Peer ReviewedPostprint (published version

    Techno-economic assessment of robotic sorting of aluminium scrap

    Get PDF
    Due to shifting material use in several sectors, such as the automotive sector, the demand for wrought aluminium alloys is significantly increasing. Because of their low weight and desirable mechanical properties, wrought aluminium alloys find their use in many different applications. However, the primary production of aluminium is extremely energy intensive. Therefore, using secondary aluminium yields major environmental benefits. Hence, in order to avoid degradation of the aluminium quality during recycling, sorting aluminium alloys, based on their alloying elements, is necessary. Today, various non-ferrous metal fractions are either still sorted manually in unhealthy working conditions, resulting in either high labour costs, or the export of this waste stream to countries with a lower labour cost. With the emergence of novel spectrometric techniques, such as laser-induced breakdown spectrometry (LIBS) and deep learning computer vision techniques, the technical feasibility of classifying different aluminium alloys has been demonstrated. Therefore, the techno-economic viability of a robotic sorting process, that could be combined with such advanced classification systems, is presented. This study presents the development and evaluation of a robotic sorting system consisting of; a vision system, a conveyor, a SCARA robot and a pneumatic gripper. The vision system recognises the dimensions and positions of the objects on the conveyor and communicates with an innovative sequence planning algorithm. The use of experimental data enables to obtain realistic insights in the sorting efficiencies that can be obtained. The initial economic analysis illustrates the substantial potential of the proposed robotic sorting approach. To overcome saturation of the conveyor belt, two of the proposed systems are assumed to be capable of sorting 20.000 tons of aluminium annually each equipped with 6 robots creating a total added revenue up to 1,95 million euro per year.Peer ReviewedPostprint (published version

    The use of objective assessments in the evaluation of technical skills in cardiothoracic surgery: A systematic review

    Get PDF
    OBJECTIVES: With reductions in training time and intraoperative exposure, there is a need for objective assessments to measure trainee progression. This systematic review focuses on the evaluation of trainee technical skill performance using objective assessments in cardiothoracic surgery and its incorporation into training curricula. METHODS: Databases (EBSCOHOST, Scopus and Web of Science) and reference lists of relevant articles for studies that incorporated objective assessment of technical skills of trainees/residents in cardiothoracic surgery were included. Data extraction included task performed; assessment setting and tool used; number/level of assessors; study outcome and whether the assessments were incorporated into training curricula. The methodological rigour of the studies was scored using the Medical Education Research Study Quality Instrument (MERSQI). RESULTS: Fifty-four studies were included for quantitative synthesis. Six were randomized-controlled trials. Cardiac surgery was the most common speciality utilizing objective assessment methods with coronary anastomosis the most frequently tested task. Likert-based assessment tools were most commonly used (61%). Eighty-five per cent of studies were simulation-based with the rest being intraoperative. Expert surgeons were primarily used for objective assessments (78%) with 46% using blinding. Thirty (56%) studies explored objective changes in technical performance with 97% demonstrating improvement. The other studies were primarily validating assessment tools. Thirty-nine per cent of studies had established these assessment tools into training curricula. The mean ± standard deviation MERSQI score for all studies was 13.6 ± 1.5 demonstrating high validity. CONCLUSIONS: Despite validated technical skill assessment tools being available and demonstrating trainee improvement, their regular adoption into training curricula is lacking. There is a need to incorporate these assessments to increase the efficiency and transparency of training programmes for cardiothoracic surgeons

    Enhanced plastic recycling using RGB+depth fusion with massFaster and massMask R-CNN

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksThe rapid increase in waste generation from electrical and electronic equipment (WEEE) has created the need for more advanced sensor-based systems to sort this complex type of waste. Therefore, this study proposes a method for object detection, instance segmentation, and mass estimation of plastics and contaminants using the fusion of RGB and depth (D) images. The methodology is based on the Faster and Mask R-CNN with an extra head for the mass estimation. In addition, a pre-processing method to enhance the depth image (ED) is proposed. To evaluate the data fusion and pre-processing method, two data sets of plastics and impurities were created containing images with and without overlapping samples. The first data set contains 174 RGB images and depth (D) maps of 3146 samples, excluding their mass value, while the second data set contains 42 RGB and D images of 766 pieces together with their mass. The first and second data sets were used to evaluate the performance of Mask and Faster R-CNN. Further, the second data set was used to evaluate the network’s performance with the additional head for mass estimation.The proposed method achieved 0.75 R 2 , 1.39 RMSE, and 0.81 MAE with an IoU greater than 50% using the network Resnet50_FPN_RGBED. Hence, it can be concluded that the presented method can distinguish plastics from other materials with reasonable accuracy. Furthermore, the mass of each detected particle can be estimated individually, which is of great relevance for the recycling sector. Knowing the mass distribution and the percentage of contaminants in a waste stream of mixed plastics can be valuable for adjusting the parameters of upstream and downstream sorting processes.Peer ReviewedPostprint (author's final draft

    Simultaneous mass estimation and class classification of scrap metals using deep learning

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksWhile deep learning has helped improve the performance of classification, object detection, and segmentation in recycling, its potential for mass prediction has not yet been explored. Therefore, this study proposes a system for mass prediction with and without feature extraction and selection, including principal component analysis (PCA). These feature extraction methods are evaluated on a combined Cast (C), Wrought (W) and Stainless Steel (SS) image dataset using state-of-the-art machine learning and deep learning algorithms for mass prediction. After that, the best mass prediction framework is combined with a DenseNet classifier, resulting in multiple outputs that perform both object classification and object mass prediction. The proposed architecture consists of a DenseNet neural network for classification and a backpropagation neural network (BPNN) for mass prediction, which uses up to 24 features extracted from depth images. The proposed method obtained 0.82 R2, 0.2 RMSE, and 0.28 MAE for the regression for mass prediction with a classification performance of 95% for the C&W test dataset using the DenseNet+BPNN+PCA model. The DenseNet+BPNN+None model without the selected feature (None) used for the CW&SS test data had a lower performance for both classification of 80% and the regression (0.71 R2, 0.31 RMSE, and 0.32 MAE). The presented method has the potential to improve the monitoring of the mass composition of waste streams and to optimize robotic and pneumatic sorting systems by providing a better understanding of the physical properties of the objects being sorted.Peer ReviewedPostprint (author's final draft

    Tricuspid valve intervention at the time of pulmonary valve replacement in adults with congenital heart disease: A systematic review and meta-analysis

    Get PDF
    Background Tricuspid regurgitation (TR) is a common finding in adults with congenital heart disease referred for pulmonary valve replacement (PVR). However, indications for combined valve surgery remain controversial. This study aimed to evaluate early results of concomitant tricuspid valve intervention (TVI) at the time of PVR. Methods and Results Observational studies comparing TVI+PVR and isolated PVR were identified by a systematic search of published research. Random-effects meta-analysis was performed, comparing outcomes between the 2 groups. Six studies involving 749 patients (TVI+PVR, 278 patients; PVR, 471 patients) met the eligibility criteria. In the pooled analysis, both TVI+PVR and PVR reduced TR grade, pulmonary regurgitation grade, right ventricular end-diastolic volume, and right ventricular end-systolic volumes. TVI+PVR, but not PVR, was associated with a decrease in tricuspid valve annulus size (mean difference, -6.43 mm, 95% CI, -10.59 to -2.27

    The unfinished agenda of communicable diseases among children and adolescents before the COVID-19 pandemic, 1990-2019: a systematic analysis of the Global Burden of Disease Study 2019

    Get PDF
    BACKGROUND: Communicable disease control has long been a focus of global health policy. There have been substantial reductions in the burden and mortality of communicable diseases among children younger than 5 years, but we know less about this burden in older children and adolescents, and it is unclear whether current programmes and policies remain aligned with targets for intervention. This knowledge is especially important for policy and programmes in the context of the COVID-19 pandemic. We aimed to use the Global Burden of Disease (GBD) Study 2019 to systematically characterise the burden of communicable diseases across childhood and adolescence. METHODS: In this systematic analysis of the GBD study from 1990 to 2019, all communicable diseases and their manifestations as modelled within GBD 2019 were included, categorised as 16 subgroups of common diseases or presentations. Data were reported for absolute count, prevalence, and incidence across measures of cause-specific mortality (deaths and years of life lost), disability (years lived with disability [YLDs]), and disease burden (disability-adjusted life-years [DALYs]) for children and adolescents aged 0-24 years. Data were reported across the Socio-demographic Index (SDI) and across time (1990-2019), and for 204 countries and territories. For HIV, we reported the mortality-to-incidence ratio (MIR) as a measure of health system performance. FINDINGS: In 2019, there were 3·0 million deaths and 30·0 million years of healthy life lost to disability (as measured by YLDs), corresponding to 288·4 million DALYs from communicable diseases among children and adolescents globally (57·3% of total communicable disease burden across all ages). Over time, there has been a shift in communicable disease burden from young children to older children and adolescents (largely driven by the considerable reductions in children younger than 5 years and slower progress elsewhere), although children younger than 5 years still accounted for most of the communicable disease burden in 2019. Disease burden and mortality were predominantly in low-SDI settings, with high and high-middle SDI settings also having an appreciable burden of communicable disease morbidity (4·0 million YLDs in 2019 alone). Three cause groups (enteric infections, lower-respiratory-tract infections, and malaria) accounted for 59·8% of the global communicable disease burden in children and adolescents, with tuberculosis and HIV both emerging as important causes during adolescence. HIV was the only cause for which disease burden increased over time, particularly in children and adolescents older than 5 years, and especially in females. Excess MIRs for HIV were observed for males aged 15-19 years in low-SDI settings. INTERPRETATION: Our analysis supports continued policy focus on enteric infections and lower-respiratory-tract infections, with orientation to children younger than 5 years in settings of low socioeconomic development. However, efforts should also be targeted to other conditions, particularly HIV, given its increased burden in older children and adolescents. Older children and adolescents also experience a large burden of communicable disease, further highlighting the need for efforts to extend beyond the first 5 years of life. Our analysis also identified substantial morbidity caused by communicable diseases affecting child and adolescent health across the world. FUNDING: The Australian National Health and Medical Research Council Centre for Research Excellence for Driving Investment in Global Adolescent Health and the Bill & Melinda Gates Foundation
    corecore