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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract 

Due to shifting material use in several sectors, such as the automotive sector, the demand for wrought aluminium alloys is 
significantly increasing. Because of their low weight and desirable mechanical properties, wrought aluminium alloys find their use 
in many different applications. However, the primary production of aluminium is extremely energy intensive. Therefore, using 
secondary aluminium yields major environmental benefits. Hence, in order to avoid degradation of the aluminium quality during 
recycling, sorting aluminium alloys, based on their alloying elements, is necessary.  Today, various non-ferrous metal fractions are 
either still sorted manually in unhealthy working conditions, resulting in either high labour costs, or the export of this waste stream 
to countries with a lower labour cost. With the emergence of novel spectrometric techniques, such as laser-induced breakdown 
spectrometry (LIBS) and deep learning computer vision techniques, the technical feasibility of classifying different aluminium 
alloys has been demonstrated. Therefore, the techno-economic viability of a robotic sorting process, that could be combined with 
such advanced classification systems, is presented. This study presents the development and evaluation of a robotic sorting system 
consisting of; a vision system, a conveyor, a SCARA robot and a pneumatic gripper. The vision system recognises the dimensions 
and positions of the objects on the conveyor and communicates with an innovative sequence planning algorithm. The use of 
experimental data enables to obtain realistic insights in the sorting efficiencies that can be obtained. The initial economic analysis 
illustrates the substantial potential of the proposed robotic sorting approach. To overcome saturation of the conveyor belt, two of 
the proposed systems are assumed to be capable of sorting 20.000 tons of aluminium annually each equipped with 6 robots creating 
a total added revenue up to 1,95 million euro per year.  
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1. Introduction 

Nations worldwide have the objective of minimising 
pollution and avoiding the depletion of raw materials. To 
achieve these objectives, low emission mobility targets have 
been established resulting in the production of more electric 
and lighter vehicles [1]. Both composite materials and high 

purity aluminium alloys are used to achieve weight reduction 
because of their very high strength-to-weight ratio. Therefore, 
the production of wrought aluminium alloys is increasing, 
while the production of cast aluminium alloys, mainly used for 
the production of combustion engines, is stabilising [2]. 
Already today aluminium is the most produced non-ferrous 
metal [3]. Despite all the benefits of using aluminium, primary 
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1. Introduction 

Nations worldwide have the objective of minimising 
pollution and avoiding the depletion of raw materials. To 
achieve these objectives, low emission mobility targets have 
been established resulting in the production of more electric 
and lighter vehicles [1]. Both composite materials and high 

purity aluminium alloys are used to achieve weight reduction 
because of their very high strength-to-weight ratio. Therefore, 
the production of wrought aluminium alloys is increasing, 
while the production of cast aluminium alloys, mainly used for 
the production of combustion engines, is stabilising [2]. 
Already today aluminium is the most produced non-ferrous 
metal [3]. Despite all the benefits of using aluminium, primary 
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aluminium production is a very polluting process and is 
responsible for 3,5% of global electricity consumption and 1% 
of the global CO2 emission [3]. 

Recycling aluminium has a significantly lower 
environmental impact than producing primary aluminium. 
However, by mixing different aluminium alloys and impurities, 
quality losses typically occur during recycling [4], limiting the 
applications for which recycled aluminium can be used today. 
Consequently, the aluminium is downcycled instead of 
recycled. Paraskevas et al. show that this downcycling practice 
and the rising need for high purity aluminium will result in an 
excess of low purity aluminium for which there is no demand  
[5]. This excess of aluminium scrap will likely end up to a large 
extent in landfill and will need to be replaced by new primary 
aluminium, resulting in additional environmental impact. At 
this point, the generated amount of mixed, low purity 
aluminium scrap will exceed the amount that can be recycled, 
either directly for the production of cast alloys or through 
dilution for the production of wrought alloys [2] . 

In order to use recycled aluminium for applications where 
primary aluminium is typically used, current sorting methods 
need to be drastically improved [6]. Diaz et al. demonstrated 
that neural networks are capable of classifying cast and 
wrought aluminium with high accuracy using only colour and 
depth images [7], providing new opportunities for enhanced 
automated aluminium sorting systems. 

Therefore, this research investigates the combination of 
such vision systems with a robotic sorting system for 
aluminium recycling, addressing the following aspects: 

- Technical analysis: 
The system design and plant layout, i.e., to answer 
questions such as how many robots could be used in 
each system and how many systems are needed to sort 
a provided annual throughput.  

- Economic analysis: 
The analysis of the potential economic advantages of 
the proposed system and a sensitivity analysis on the 
economic estimation to indicate further business 
potential. 

The ecological impact is a third aspect, it is however not 
covered in this work. The remainder of the paper is organized 
as follows: The hardware setup and the developed software are 
explained in detail in Section 2. In Section 3, the method 
adopted in the performed experiment is explained. Section 4 
analyses the results and discusses different scenarios, while in 
Section 5 a sensitivity analysis is described to quantify how the 
waste stream composition and the value of the sorted fractions 
influence the yearly revenue. Finally, Section 6 presents the 
conclusions and future work. 

2. Materials and methods 

The experiments are performed on a set of shredded 
aluminium flakes with a size ranging from 40mm to 120mm 
and an average sample weight of 47g, which is determined by 
weighing 840 metal particles. The origin of the scrap samples 
is automotive and construction waste. The sample set consists 
of almost exclusively aluminium alloys, a waste stream known 
as Twitch [8].  

The test setup, shown in Figure 1, consists of six main 
components: 1) A five meter long conveyor, with a width of 

0.6 meter, which is driven by a servo motor that allows accurate 
speed control and is randomly filled with metal pieces at the 
beginning of the conveyor. 2) The vision system consists of a 
3D line camera and an RGB + NIR camera. 3) A computer 
running a custom developed computer vision algorithm, whose 
functioning is out of the scope of this paper, to process and 
analyse the captured images in order to define the size, location, 
height, rotation and class of the objects. 4) After processing, 
the developed Python program on the same desktop computer 
encodes the data and sends these to the robot. 5) An encoder, 
used to synchronize the system (including the robot and 
cameras) and 6) A PLC to synchronize the camera system, 
robot and processing software.  

The developed software for the proposed sorting process 
consists of multiple subprograms that were all implemented in 
Python: image processing, combining, sorting, planning and 
encoding. Within the robot controller, three main processes are 
running: decoding, processing and performance logging.  

After the PLC triggers the camera, it captures an image 
which, in turn, is sent to the first subprogram. The image 
processing algorithm builds a list with all the recognised 
objects together with their identification number, X-, Y- and Z-
coordinates, angle of the object with respect to the conveyor 
axis, and both the width and class of the object. Only the width 
dimension is sent to the robot since a parallel gripping device 
is considered to be used. It represents the magnitude of the 
object perpendicular to the longest axis of the object through 
the centre of the object.  

 

 

Figure 1: Render of physical test setup with the gripper attached to a    
Staubli TS2-80 (middle) and the camera box (top right).   

An identification number is a unique number starting from 
0 assigned to every object. After the image processing, the data 
list, comprising the data of multiple images, is constructed and 
sorted based on the object's location along the conveyor in the 
direction of the movement, represented by the Y-coordinate. 
This way, the first object data represent the object on the 
conveyor that reaches the robot first. Next, a novel planning 
algorithm calculates all the possible sequences and the total idle 
time within subsequent picks based on state-of-the-art 
algorithms for sequence planning [9] . The most extensive 
sequence will be selected every time to maximize the number 
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of objects picked. Since two equally long sequences could be 
found, an additional selecting criterion is needed. For this 
purpose, the total idle time will be used. The sequence with the 
longest idle time will be selected since the robot is assumed to 
consume less energy when idling, even though the amount of 
energy preserved by this is considered marginal.  

To minimise the time needed for a picking motion, the zone 
in which the robot is able to pick objects, referred to as the 
picking zone, has been limited. Usually, the picking zone is 
defined as the intersection between the workspace of the robot 
and the conveyor surface. However, to better control the 
picking motion and to minimise the time needed for the robot 
to return and to pick the following object in this zone, a thin 
band is defined at the beginning of the original picking zone. 
Figure 2 shows the picking zone with a white box. The robot 
always starts its picking movement in this picking zone. This 
also assures that there is sufficient time for the robot to pick the 
object after synchronizing before the object passes too far on 
the conveyor, resulting in an inefficient operation of the robot. 
Picking objects too far on the conveyor is inefficient, because 
of the robot's fixed righty configuration, which causes the first 
and slowest axis of the robot to be moved the most when 
working down the conveyor belt. In addition, when switching 
from righty to lefty configuration and back would also 
introduce extra time required for a certain pick. Therefore, a 
time loss. A fictive boundary is used which the robot will not 
surpass to prevent this, as shown by the dotted line in Figure 2. 
Working in front of this boundary enables the robot to use its 
second and faster axis more intensively, leading to more 
efficient picks. The extra speed also seems to help with 
throwing the objects at the drop of location since the objects 
have a higher speed when released.  

 

Figure 2: Top down robot view with picking zone (white square)               
and drop-off location (arrow). 

Within the picking zone a certain number of equally spaced 
points, illustrated in Figure 2 by dots, are defined to 
experimentally determine the time needed for a certain pick. A 
pick movement is performed starting from all these points 
while recording the time needed. The data are then kept in an 
array and used to estimate the needed picking time for all 
random object locations in the picking zone, using interpolation 
as presented in Han et al. [9], whereas, in this study, a limited 
picking zone is used. This approach yields some benefits, 
namely: 1) Using the predefined picking time is a less 

computationally demanding approach and, therefore, it is 
suitable for a real-time system as the one proposed in this work. 
2) The robot only receives data from the objects which it can 
pick and, therefore, the system knows which objects are 
pickable by a particular robot and which objects could be 
passed on to another robot. 3) It is a robotic-type independent 
approach, which means that it does not depend on the robot 
manufacturer and, therefore, it is more flexible. 

To define the picking sequence, the first object to be picked 
has to be selected. This can be either the first object from the 
combined data of the images or the first possible object after 
picking the last object from the previously combined data. In 
Figure 3, this first object is represented by A. All cells in the 
table contain the spare time available to pick a specific object 
(row header) after picking another object (from the column 
header). The first circled value within this figure represents the 
first positive spare time in the column after picking A and 
getting ready to pick the next object, B in this case. If this spare 
time is negative, the robot will never be able to pick this object 
after picking A. In that case, the negative cell is skipped and the 
next cell in the column is calculated to consider this object as 
an option to be picked next in the sequence. Since B has a 
positive value, it is considered a viable option in this example 
and the algorithm will stop calculating the spare times (robot 
idle time) for alternative options and will repeat the same steps 
starting from column B. In this example, picking C is not an 
option after picking B. Therefore, object C will be skipped, in 
this example, D is a viable option. This method continues until 
the last column is reached (or skipped). To make sure all 
possible sequences are checked, all the objects that where 
skipped after defining the first succeeding object, non in this 
example, are used as a first object to define a sequence for these 
since starting with object A (which is the first viable option) is 
not necessarily the best option. As explained before, the 
resulting sequences are compared to check if starting with a 
later object could yield a benefit. 

 

Figure 3: Sequence planning based on idle time from robot in-between 
consecutive picks   

After receiving the sequence, the robot picks the objects 
accordingly. The data from the different processing steps are 
saved in a database. The first data transferred are the sorted data 
list generated from the images. Second, the sequence list, 
which was sent to the robot, is saved in the same database. The 
robot controller saves the object data and the picking time of 
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all picked objects. After the experiments, both databases are 
merged. A table is generated and evaluated in Microsoft Excel, 
containing all the information from the recognised objects, 
whether or not the data have been sent to the robot, the picking 
confirmation and the time needed to execute the picking task.  

3. Experiments 

The conveyor is not loaded during the experiment to avoid 
collisions and prevent intensive manual labour for loading and 
unloading. Instead, an image set is taken during five 
experiments using a conveyor speed of 0,5 m/s, when the 
objects are loaded with different spread densities. Within the 
image set, there were no overlapping objects. In industrial 
applications, this is commonly realized by installing a vibration 
feeder or brushes to make sure no objects are laying on top of 
each other.  

The first goal of the experiment is to estimate the ideal robot 
plant layout in function of the annual throughput. Second, an 
economic analysis is performed on a case study followed by a 
sensitivity analysis. 

For the case study, an annual throughput of 20.000 tons is 
assumed to be desired in 3.400 working hours. According to 
Van den Eynde et al., Twitch comprises approximately 35% 
cast aluminium and for the remainder, wrought alloys [2]. 
Therefore, cast alloys will be picked from the conveyor as it is 
the minority fraction. 

As explained, different image sets are created for the five 
experiments with a gradually increasing filling density to 
imitate different throughput scenarios. During the experiments, 
all the objects are targeted as if they are cast objects to exclude 
the influence of the fluctuation in the composition of the test 
samples on the performance of the robot. For example, 
momentary higher concentrations of casts could result in a peak 
load for the robot, creating unrealistic results or extreme idle 
times. 

4. Results 

The total system cost is estimated for all the scenarios based 
on the minimum number of robots. The picked amount of 
material per robot is assumed linearly scalable. By scaling 
linear, an error is made. The indicated amount of picked objects 
is assumed to be higher than the capable amount. Because the 
current setup only includes one robot and the software is not 
ready to plan sequences for two or more robots, no experiment 
to define the error could be executed. This will be covered in 
future work. Moreover, other aspects, like gripper efficiency 
and homogeneity of the conveyor filling, are assumed to have 
a more significant impact on the performance of a robotic 
sorting system. After calculating the system's cost, the sorting 
benefit is calculated. 

4.1. Sorting system requirements 

Table 1 shows, for each scenario, the number of objects that 
are fed during the different experiments, as well as how many 
of those pieces got picked by a single robot. The number of 
robots needed to pick 35% of the pieces, which corresponds to 
the cast fraction, is calculated using this data.  

Table 1: Test scenario characteristics; conveyor fill density inclines with 
scenario number 

 
 
Both scenario 3 and 4 surprisingly show less picked objects, 

which confirms the relevance of this work. A lot of different 
parameters influence the efficiency of the system. For example, 
the relative positions of the metal objects influence the robot 
path so that less efficient sequences could be the best option, 
resulting in less picked objects.  

Figure 4 shows the number of robots required to achieve the 
corresponding throughput. The number of robots is rounded up 
to determine the investment cost per system. Also, the 
investment cost, the yearly benefit of sorting and profit in the 
first year are shown for each indicated throughput and number 
of robots. The investment cost and the economic analysis will 
be further explained in Section 5. 

 

 

Figure 4: System requirements and economic parameters as function of 
required throughput 

As illustrated in Figure 4, the throughput per system 
profoundly impacts the number of robots and, therefore, the 
investment cost and potential profits. While an extra robot adds 
a cost to the system, it also increases both the potential for 
higher throughput and an increased share of the aluminium 
fraction to be picked. Another observation is that the robots 
only contribute to 15-20% of the total cost of the proposed 
system.  

Considering the presented experimental setup, the 
performed experiments indicate that the maximum throughput 
of the sorting installation mainly depends on the filling density 
since the width of the conveyor and the conveyor speed are 
constant. An increased or decreased conveyor speed directly 
influences the performance of the robot and would therefore 
require more experiments. It should also be considered that the 
applied gripper type limits the allowed population of pieces on 
the conveyor. Some grippers require more free space around 
the targeted object than others. For instance, parallel grippers 
with claws need extra free space for positioning the claws 
without colliding with other objects, while suction cups or 
other grippers may not require this spacing. Given the shredded 
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nature of the Twitch waste stream, the gripper type considered 
in the experiments is a parallel gripper with custom claws. 

4.2. Plant requirements 

Since the fifth scenario is assumed to have the maximum 
conveyor fill density when using a parallel gripper, the results 
from the fifth scenario with the highest possible throughput are 
used for further analysis. Since the fifth scenario is the 
limitation, six robots will be considered the maximum number 
of robots that can be implemented in a single system. 

Figure 5 shows extrapolated data for both the limits and the 
capabilities of multiple sorting plant configurations and 
indicates the increased revenue for the different configurations 
as function of the number of shifts the plant is operated in 
annual working hours.  

For the selected use case, this results in the need for 11 
robots to enable the sorting of 20.000 tons in 3.400 working 
hours. Consequently, 2 systems are required. One extra robot 
is added to cope with downtime or extra available material 
within those machines, resulting in two six-robot systems. 

 

 

Figure 5: Plant layout 

5. Economic analysis 

As shown in Figure 5, the use case with two systems and, 
therefore, 12 robots will require around 3.400 working hours or 
around seven eight-hour shifts a week to sort the required 
throughput of 20.000 tons a year. The investment cost of one 
system is estimated between 600.000 and 800.000 euro 
consisting of 20.000 euro for the camera system, 15.000 euro 
for the conveyor, 6 times 20.000 euro for the robots and 
445.000 to 645.000 euro for the realisation of the system, 
including the labour and extra material needed to build the 
system as well as the cost for transport, calibration, setting up 
the system for the customer and a possible profit margin. The 
development cost is not included since this cost has to be 
divided over the amount of systems sold which is hard to 
estimate. 

However, some additional assumptions need to be taken to 
perform economic calculations. First, we assume the complete 
aluminium stream will never lose value by sorting it. Second, 
the value for the sorted cast and wrought fractions will be 

considered respectively 1.200 and 1.350 euro per ton, unsorted 
aluminium is valued at 1.200 euro per ton [8].  

Consequently, the unsorted material (20.000 tons) has a 
value of 24 million euro. The sorted material has a value of 
25,95 million euro increasing the value by 1,95 million euro 
resulting in a payback time of 3,69 up to 4,92 months , 
depending on the cost of the realisation of the system. When 
including the development, cost this period will end up being 
longer.  

Since the aluminium scrap prices can strongly fluctuate 
over time, and in order to assess the robustness of an investment 
under the uncertain price conditions, a sensitivity analysis is 
performed to estimate the influence of this fluctuation on the 
revenue associated with sorting cast and wrought aluminium 
[10]. 

5.1. Sensitivity analysis 

During the subsequent sensitivity analysis, two scenarios 
are discussed. The first scenario focuses on the change of the 
added value created by sorting wrought aluminium, which is 
varied between 0 and 260 euro per ton in increments of 65 euro. 
Figure 6 shows the added value by separating the 35% wrought 
aluminium (x-axis) and the added annual revenue of sorting (y-
axis), with a throughput of 20.000 ton per year.  

The second sensitivity analysis focuses on how the 
changing waste stream composition could affect the revenue 
created with the sorting system. This change is depicted in 
Figure 6, representing different cast-wrought ratios of the waste 
stream. 

 

Figure 6: Sensitivity analysis on profit 

Figure 6 shows that a growing share of cast alloys 
negatively impacts the revenue and, therefore, the profit of 
sorting and that the overall revenue strongly depends on the 
actual sorting benefits, whereas an increased value of 150 €/ton 
with the considered material composition (35% cast) for the 
sorted aluminium results in an extra revenue of 1.95 million 
euro per year. With an investment cost of 600 to 800 thousand 
euro this equates to a payback time of 3,69 to 4,92 months. The 
revenue by sorting, shown in Figure 6, is not unrealistic. 
Especially if a more advanced sensor, e.g. a LIBS sensor, could 
be implemented, which could be used to classify the different 
alloy types and, therefore, facilitate the opportunity to create an 
additional benefit by sorting the waste stream in more 
aluminium fractions [11].  
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6. Conclusions and future work 

This study investigated the techno-economic viability of a 
robotic sorting system for cast and wrought aluminium alloys. 
First the system is constructed. Next a Python program with a 
novel planning algorithm was developed to enable 
communication between all the subsystems and facilitate 
sequence planning. This planning algorithm will be further 
tested and compared with state of the art in future work. This 
comparison will be made to define the error made in this work 
by linear scaling the throughput with the number of robots 
while testing the capabilities of the algorithms in terms of 
multi-robot collaboration. 

The performed empirical experiments allow that a six robot 
sorting system would be capable of sorting up to around 11.000 
tons a year. Within the performed case study, an installation 
consisting out of two six-robot sorting systems, capable of 
sorting 20.000 tons a year, has been evaluated. An estimated 
investment of 1,2 to 1,6 million euro could increase the revenue 
with 1,95 million euro a year. Consequently, the payback 
period for this sorting installation is estimated to be around 3.69 
to 4.92 months. 

A gripping device with a smaller footprint allows for denser 
conveyor filling. Consequently, more robots can operate on the 
same conveyor and therefore increase the throughput without 
duplicating the senor and control components. Future research 
will further explore different gripper types and adapt existing 
grippers. 

The sensitivity analysis shows further economic potential 
of the sorting systems for different aluminium compositions 
and a range of different added values. 
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