68 research outputs found

    Cold extremities in migraine: a marker for vascular dysfunction in women

    Get PDF
    Background and purpose: Migraine is recognized as a vascular risk factor, especially in women. Presumably, migraine, stroke and cardiovascular events share pathophysiological mechanisms. Self-reported cold extremities were investigated as a marker for vascular dysfunction in migraine. Secondly, it was hypothesized that suffering from cold extremities affects sleep quality, possibly exacerbating migraine attack frequency. Methods: In this case–control study, a random sample of 1084 migraine patients and 348 controls (aged 22–65 years) from the LUMINA migraine cohort were asked to complete questionnaires concerning cold extremities, sleep quality and migraine. Results: A total of 594 migraine patients and 199 controls completed the questionnaires. In women, thermal discomfort and cold extremities (TDCE) were more often reported by migraineurs versus controls (odds ratio 2.3, 95% confidence interval 1.4–3.7; P < 0.001), but not significantly so in men (odds ratio 2.5, 95% confidence interval 0.9–6.9; P = 0.09). There was no difference in TDCE comparing migraine with or without aura. Female migraineurs who reported TDCE had higher attack frequencies compared to female migraineurs without TDCE (4 vs. 3 attacks per month; P = 0.003). The association between TDCE and attack frequency was mediated by the presence of difficulty initiating sleep (P = 0.02). Conclusion: Women with migraine more often reported cold extremities compared with controls, possibly indicating a sex-specific vascular vulnerability. Female migraineurs with cold extremities had higher attack frequencies, partly resulting from sleep disturbances. Future studies need to demonstrate whether cold extremities in female migraineurs are a predictor for cardiovascular and cerebrovascular events

    Structural, magnetic and electrical properties of single crystalline La_(1-x)Sr_xMnO_3 for 0.4 < x < 0.85

    Full text link
    We report on structural, magnetic and electrical properties of Sr-doped LaMnO_3 single crystals for doping levels 0.4 < x < 0.85. The complex structural and magnetic phase diagram can only be explained assuming significant contributions from the orbital degrees of freedom. Close to x = 0.6 a ferromagnetic metal is followed by an antiferromagnetic metallic phase below 200 K. This antiferromagnetic metallic phase exists in a monoclinic crystallographic structure. Following theoretical predictions this metallic antiferromagnet is expected to reveal an (x^2-y^2)-type orbital order. For higher Sr concentrations an antiferromagnetic insulator is established below room temperature.Comment: 8 pages, 7 figure

    Variational Mean Field approach to the Double Exchange Model

    Get PDF
    It has been recently shown that the double exchange Hamiltonian, with weak antiferromagnetic interactions, has a richer variety of first and second order transitions than previously anticipated, and that such transitions are consistent with the magnetic properties of manganites. Here we present a thorough discussion of the variational Mean Field approach that leads to the these results. We also show that the effect of the Berry phase turns out to be crucial to produce first order Paramagnetic-Ferromagnetic transitions near half filling with transition temperatures compatible with the experimental situation. The computation relies on two crucial facts: the use of a Mean Field ansatz that retains the complexity of a system of electrons with off-diagonal disorder, not fully taken into account by the Mean Field techniques, and the small but significant antiferromagnetic superexchange interaction between the localized spins.Comment: 13 pages, 11 postscript figures, revte

    Characterization of binding, functional activity, and contractile responses of the selective 5-HT1F receptor agonist lasmiditan

    Get PDF
    Background and Purpose: Triptans are 5-HT1B/1D receptor agonists (that also display 5-HT1F receptor affinity) with antimigraine action, contraindicated in patients with coronary artery disease due to their vasoconstrictor properties. Conversely, lasmiditan was developed as an antimigraine 5-HT1F receptor agonist. To assess the selectivity and cardiovascular effects of lasmiditan, we investigated the binding, functional activity, and in vitro/in vivo vascular effects of lasmiditan and compared it to sumatriptan. Experimental Approach: Binding and second messenger activity assays of lasmiditan and other serotoninergic agonists were performed for human 5-HT1A, 5-HT1B, 5-HT1D, 5-ht1E, 5-HT1F, 5-HT2A, 5-HT2B, and 5-HT7 receptors, and the results were correlated with their potency to constrict isolated human coronary arteries (HCAs). Furthermore, concentration–response curves to lasmiditan and sumatriptan were performed in proximal and distal HCA, internal mammary, and middle meningeal arteries. Finally, anaesthetized female beagle dogs received i.v. infusions of lasmiditan or sumatriptan in escalating cumulative doses, and carotid and coronary artery diameters were measured. Key Results: Lasmiditan showed high selectivity for 5-HT1F receptors. Moreover, the functional potency of the analysed compounds to inhibit cAMP increase through 5-HT1B receptor activation positively correlated with their potency to contract HCA. In isolated human arteries, sumatriptan, but not lasmiditan, induced contractions. Likewise, in vivo, sumatriptan decreased coronary and carotid artery diameters at clinically relevant doses, while lasmiditan was devoid of vasoconstrictor activity at all doses tested. Conclusions and Implications: Lasmiditan is a selective 5-HT1F receptor agonist devoid of vasoconstrictor activity. This may represent a cardiovascular safety advantage when compared to the triptans

    On the effects of the magnetic field and the isotopic substitution upon the infrared absorption of manganites

    Full text link
    Employing a variational approach that takes into account electron-phonon and magnetic interactions in La1xAxMnO3La_{1-x}A_xMnO_3 perovskites with 0<x<0.50<x<0.5, the effects of the magnetic field and the oxygen isotope substitution on the phase diagram, the electron-phonon correlation function and the infrared absorption at x=0.3x=0.3 are studied. The lattice displacements show a strong correlation with the conductivity and the magnetic properties of the system. Then the conductivity spectra are characterized by a marked sensitivity to the external parameters near the phase boundary.Comment: 10 figure

    Case of seasonal reassortant a(H1N2) influenza virus infection, the Netherlands, March 2018

    Get PDF
    A seasonal reassortant A(H1N2) influenza virus harbouring genome segments from seasonal influenza viruses A(H1N1)pdm09 (HA and NS) and A(H3N2) (PB2, PB1, PA, NP, NA and M) was identified in March 2018 in a 19-months-old patient with influenza-like illness (ILI) who presented to a general practitioner participating in the routine sentinel surveillance of ILI in the Netherlands. The patient recovered fully. Further epidemiological and virological investigation did not reveal additional cases

    Global maps of soil temperature.

    Get PDF
    Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km &lt;sup&gt;2&lt;/sup&gt; resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km &lt;sup&gt;2&lt;/sup&gt; pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications

    Track E Implementation Science, Health Systems and Economics

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138412/1/jia218443.pd
    corecore