47 research outputs found

    Advanced MRI in cerebral small vessel disease

    Get PDF
    Cerebral small vessel disease (cSVD) is a major cause of stroke and dementia. This review summarizes recent developments in advanced neuroimaging of cSVD with a focus on clinical and research applications. In the first section, we highlight how advanced structural imaging techniques, including diffusion magnetic resonance imaging (MRI), enable improved detection of tissue damage, including characterization of tissue appearing normal on conventional MRI. These techniques enable progression to be monitored and may be useful as surrogate endpoint in clinical trials. Quantitative MRI, including iron and myelin imaging, provides insights into tissue composition on the molecular level. In the second section, we cover how advanced MRI techniques can demonstrate functional or dynamic abnormalities of the blood vessels, which could be targeted in mechanistic research and early-stage intervention trials. Such techniques include the use of dynamic contrast enhanced MRI to measure blood–brain barrier permeability, and MRI methods to assess cerebrovascular reactivity. In the third section, we discuss how the increased spatial resolution provided by ultrahigh field MRI at 7 T allows imaging of perforating arteries, and flow velocity and pulsatility within them. The advanced MRI techniques we describe are providing novel pathophysiological insights in cSVD and allow improved quantification of disease burden and progression. They have application in clinical trials, both in assessing novel therapeutic mechanisms, and as a sensitive endpoint to assess efficacy of interventions on parenchymal tissue damage. We also discuss challenges of these advanced techniques and suggest future directions for research

    A Case of Sporadic Cerebral Small Vessel Disease in an Identical Twin

    Get PDF
    Sporadic cerebral small vessel disease (cSVD) is primarily attributed to heritability and vascular risk factors. Still, our understanding of the causative factors in cSVD lesion burden in the brain is far from complete. This is exemplified by this case of identical twins with remarkably similar vascular risk profiles, where one twin had developed severe cSVD on neuroimaging with cognitive deficits, while the other twin had no cSVD. This case highlights the need to search for further causes of cSVD, also beyond genetic and conventional vascular risk factors. Identification of other potential risk factors or disease mechanisms should be a priority for cSVD research to improve our understanding, prevention and treatment of this common cause of vascular brain injury with major clinical consequences

    Minocycline in Severe Cerebral Amyloid Angiopathy: A Single-Center Cohort Study

    Get PDF
    BACKGROUND: Evidence from animal studies suggests that minocycline may reduce lobar intracerebral hemorrhage (ICH) recurrence in cerebral amyloid angiopathy, possibly by inhibiting perivascular extracellular matrix degradation in cerebral small vessels. There is currently no evidence of its safety or efficacy in humans with cerebral amyloid angiopathy. METHODS AND RESULTS: To provide preliminary data to support future studies of minocycline’s efficacy, the authors performed a retrospective single-center cohort study to assess the incidence of recurrent ICH in patients with an aggressive clinical course of probable cerebral amyloid angiopathy who had been prescribed minocycline off-label via shared decision-making. Crude incidence rate ratios were calculated to compare incidence rates before versus after treatment. Sixteen patients (mean age at minocycline initiation, 66.3±3.5 years; women 62.5%; median of 3 lobar ICHs [range, 1–6]) were initiated on minocycline and followed for a median of 12.4 months (range, 1.8–61.4 months). Adverse events were reported in 4 of 16 patients (gastroenteric, n=3; dizziness, n=1) and were considered mild. ICH incidence sharply increased the year before minocycline initiation compared with the preceding years (2.18 [95% CI, 1.50–3.07] versus 0.40 [95% CI, 0.25–0.60] events per patient-year) and fell to 0.46 (95% CI, 0.23–0.83) events per patient-year afterwards. Incidence rate ratios of recurrent ICH after minocycline was lower (0.21 [95% CI, 0.11–0.42], P<0.0001) compared with the year before initiation. CONCLUSIONS: Minocycline appeared safe and generally tolerated in a small group of patients with clinically aggressive cerebral amyloid angiopathy and was associated with reduced ICH recurrence. Determining whether this reduction represents a biological response to minocycline rather than a regression to the mean, however, will require a future controlled treatment trial

    CADASIL Affects Multiple Aspects of Cerebral Small Vessel Function on 7T-MRI

    Get PDF
    International audienceObjective: Cerebral small vessel diseases (cSVDs) are a major cause of stroke and dementia. We used cutting-edge 7T-MRI techniques in patients with Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), to establish which aspects of cerebral small vessel function are affected by this monogenic form of cSVD. Methods: We recruited 23 CADASIL patients (age 51.1 AE 10.1 years, 52% women) and 13 age-and sex-matched controls (46.1 AE 12.6, 46% women). Small vessel function measures included: basal ganglia and centrum semiovale perforating artery blood flow velocity and pulsatility, vascular reactivity to a visual stimulus in the occipital cortex and reactivity to hypercapnia in the cortex, subcortical gray matter, white matter, and white matter hyperintensities. Results: Compared with controls, CADASIL patients showed lower blood flow velocity and higher pulsatility index within perforating arteries of the centrum semiovale (mean difference À 0.09 cm/s, p = 0.03 and 0.20, p = 0.009) and basal ganglia (mean difference À 0.98 cm/s, p = 0.003 and 0.17, p = 0.06). Small vessel reactivity to a short visual stimulus was decreased (blood-oxygen-level dependent [BOLD] mean difference À0.21%, p = 0.04) in patients, while reactivity to hypercapnia was preserved in the cortex, subcortical gray matter, and normal appearing white matter. Among patients, reactivity to hypercapnia was decreased in white matter hyperintensities compared to normal appearing white matter (BOLD mean difference À0.29%, p = 0.02). Interpretation: Multiple aspects of cerebral small vessel function on 7T-MRI were abnormal in CADASIL patients, indicative of increased arteriolar stiffness and regional abnormalities in reactivity, locally also in relation to white matter injury. These observations provide novel markers of cSVD for mechanistic and intervention studies
    corecore