74 research outputs found

    Dozens of compact and high velocity-dispersion early-type galaxies in Sloan Digital Sky Survey

    Full text link
    Aims. We aim at finding candidates of potential survivors of high-redshift compact galaxies in SDSS, as targets for more detailed follow-up observations. Methods. From the virial theorem it is expected that for a given mass, compact galaxies have stellar velocity dispersion higher than the mean due to their smaller sizes. Therefore velocity dispersion coupled with size (or mass) is an appropriate method to select relics, independent of the stellar population properties. Based on these consideration we design a set of criteria using distribution of early-type galaxies from SDSS on the log10_{10}(R0_{0})-log10_{10}(σ0\sigma_{0}) plane to find the most extreme objects on it. Results. We find 76 galaxies at 0.05 < z < 0.2, which have properties similar to the typical quiescent galaxies at high redshift. We study how well these galaxies fit on well-known local universe relations of early-type galaxies such as the fundamental plane, the red sequence or mass-size relations. As expected from the selection criteria, the candidates are located in an extreme corner of mass-size plane. However, they do not extend as deeply into the so-called zone of exclusion as some of the high-redshift compact galaxies ('red nuggets') found at high redshift, being a factor 2-3 less massive at a given intrinsic scale size. Our candidates are systematically offset from scaling relations of average early-type galaxies, while being in the mass-size range expected for passive evolution of the red nuggets from their high redshift to the present. Conclusions. The 76 selected candidates form a well suited set of objects for further follow-up observations. We argue that selecting a high velocity dispersion is the best way to find analogues of compact high redshift galaxies in the local universe.Comment: 37 pages, 24 figures, accepted for publication in A&

    A Stellar Dynamical Mass Measurement of the Black Hole in NGC 3998 from Keck Adaptive Optics Observations

    Get PDF
    We present a new stellar dynamical mass measurement of the black hole in the nearby, S0 galaxy NGC 3998. By combining laser guide star adaptive optics observations obtained with the OH-Suppressing Infrared Imaging Spectrograph on the Keck II telescope with long-slit spectroscopy from the Hubble Space Telescope and the Keck I telescope, we map out the stellar kinematics on both small spatial scales, well within the black hole sphere of influence, and on large scales. We find that the galaxy is rapidly rotating and exhibits a sharp central peak in the velocity dispersion. Using the kinematics and the stellar luminosity density derived from imaging observations, we construct three-integral, orbit-based, triaxial stellar dynamical models. We find the black hole has a mass of M_BH = (8.1_{-1.9}^{+2.0}) x 10^8 M_sun, with an I-band stellar mass-to-light ratio of M/L = 5.0_{-0.4}^{+0.3} M_sun/L_sun (3-sigma uncertainties), and that the intrinsic shape of the galaxy is very round, but oblate. With the work presented here, NGC 3998 is now one of a very small number of galaxies for which both stellar and gas dynamical modeling have been used to measure the mass of the black hole. The stellar dynamical mass is nearly a factor of four larger than the previous gas dynamical black hole mass measurement. Given that this cross-check has so far only been attempted on a few galaxies with mixed results, carrying out similar studies in other objects is essential for quantifying the magnitude and distribution of the cosmic scatter in the black hole mass - host galaxy relations.Comment: 19 pages, 15 figures, accepted for publication in Ap

    Towards Precision Supermassive Black Hole Masses using Megamaser Disks

    Full text link
    Megamaser disks provide the most precise and accurate extragalactic supermassive black hole masses. Here we describe a search for megamasers in nearby galaxies using the Green Bank Telescope (GBT). We focus on galaxies where we believe that we can resolve the gravitational sphere of influence of the black hole and derive a stellar or gas dynamical measurement with optical or NIR observations. Since there are only a handful of super massive black holes (SMBH) that have direct black hole mass measurements from more than one method, even a single galaxy with a megamaser disk and a stellar dynamical black hole mass would provide necessary checks on the stellar dynamical methods. We targeted 87 objects from the Hobby-Eberly Telescope Massive Galaxy Survey, and detected no new maser disks. Most of the targeted objects are elliptical galaxies with typical stellar velocity dispersions of 250 km/s and distances within 130 Mpc. We discuss the implications of our non-detections, whether they imply a threshold X-ray luminosity required for masing, or possibly reflect the difficulty of maintaining a masing disk around much more massive (>10^8 Msun) black holes at low Eddington ratio. Given the power of maser disks at probing black hole accretion and demographics, we suggest that future maser searches should endeavour to remove remaining sample biases, in order to sort out the importance of these covariant effects.Comment: 9 pages, 5 figures, Apj, updated to match the accepted versio

    The Black Hole in the Compact, High-dispersion Galaxy NGC 1271

    Get PDF
    Located in the Perseus cluster, NGC 1271 is an early-type galaxy with a small effective radius of 2.2 kpc and a large stellar velocity dispersion of 276 km/s for its K-band luminosity of 8.9x10^{10} L_sun. We present a mass measurement for the black hole in this compact, high-dispersion galaxy using observations from the integral field spectrograph NIFS on the Gemini North telescope assisted by laser guide star adaptive optics, large-scale integral field unit observations with PPAK at the Calar Alto Observatory, and Hubble Space Telescope WFC3 imaging observations. We are able to map out the stellar kinematics on small spatial scales, within the black hole sphere of influence, and on large scales that extend out to four times the galaxy's effective radius. We find that the galaxy is rapidly rotating and exhibits a sharp rise in the velocity dispersion. Through the use of orbit-based stellar dynamical models, we determine that the black hole has a mass of (3.0^{+1.0}_{-1.1}) x 10^9 M_sun and the H-band stellar mass-to-light ratio is 1.40^{+0.13}_{-0.11} M_sun/L_sun (1-sigma uncertainties). NGC 1271 occupies the sparsely-populated upper end of the black hole mass distribution, but is very different from the Brightest Cluster Galaxies (BCGs) and giant elliptical galaxies that are expected to host the most massive black holes. Interestingly, the black hole mass is an order of magnitude larger than expectations based on the galaxy's bulge luminosity, but is consistent with the mass predicted using the galaxy's bulge stellar velocity dispersion. More compact, high-dispersion galaxies need to be studied using high spatial resolution observations to securely determine black hole masses, as there could be systematic differences in the black hole scaling relations between these types of galaxies and the BCGs/giant ellipticals, thereby implying different pathways for black hole and galaxy growth.Comment: accepted for publication in Ap

    The structural and dynamical properties of compact elliptical galaxies

    Full text link
    Dedicated photometric and spectroscopic surveys have provided unambiguous evidence for a strong stellar mass-size evolution of galaxies within the last 10 Gyr. The likely progenitors of today's most massive galaxies are remarkably small, disky, passive and have already assembled much of their stellar mass at redshift z=2. An in-depth analysis of these objects, however, is currently not feasible due to the lack of high-quality, spatially-resolved photometric and spectroscopic data. In this paper, we present a sample of nearby compact elliptical galaxies (CEGs), which bear resemblance to the massive and quiescent galaxy population at earlier times. Hubble Space Telescope (HST) and wide-field integral field unit (IFU) data have been obtained, and are used to constrain orbit-based dynamical models and stellar population synthesis (SPS) fits, to unravel their structural and dynamical properties. We first show that our galaxies are outliers in the present-day stellar mass-size relation. They are, however, consistent with the mass-size relation of compact, massive and quiescent galaxies at redshift z=2. The compact sizes of our nearby galaxies imply high central stellar mass surface densities, which are also in agreement with the massive galaxy population at higher redshift, hinting at strong dissipational processes during their formation. Corroborating evidence for a largely passive evolution within the last 10 Gyr is provided by their orbital distribution as well as their stellar populations, which are difficult to reconcile with a very active (major) merging history. This all supports that we can use nearby CEGs as local analogues of the high-redshift, massive and quiescent galaxy population, thus providing additional constraints for models of galaxy formation and evolution.Comment: 33 pages, 27 figures and 20 tables (with most of the tables provided as online-only supporting information). Accepted for publication in MNRA
    corecore