5 research outputs found
In Situ X-ray Absorption Spectroscopy of LaFeO<sub>3</sub> and LaFeO<sub>3</sub>/LaNiO<sub>3</sub> Thin Films in the Electrocatalytic Oxygen Evolution Reaction
We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film.</p
In Situ X-ray Absorption Spectroscopy of LaFeO3 and LaFeO3/LaNiO3 Thin Films in the Electrocatalytic Oxygen Evolution Reaction
We study the electrocatalytic oxygen evolution reaction using in situ X-ray absorption spectroscopy (XAS) to track the dynamics of the valence state and the covalence of the metal ions of LaFeO3 and LaFeO3/LaNiO3 thin films. The active materials are 8 unit cells grown epitaxially on 100 nm conductive La0.67Sr0.33MnO3 layers using pulsed laser deposition (PLD). The perovskite layers are supported on monolayer Ca2Nb3O10 nanosheet-buffered 100 nm SiNx membranes. The in situ Fe and Ni K-edges XAS spectra were measured from the backside of the SiNx membrane using fluorescence yield detection under electrocatalytic reaction conditions. The XAS spectra show significant spectral changes, which indicate that (1) the metal (co)valencies increase, and (2) the number of 3d electrons remains constant with applied potential. We find that the whole 8 unit cells react to the potential changes, including the buried LaNiO3 film
Orbital-overlap-driven hybridization in 3d-transition metal perovskite oxides LaMO<sub>3</sub> (M = Ti-Ni) and La<sub>2</sub>CuO<sub>4</sub>
The wide tunability of strongly correlated transition metal (TM) oxides stems from their complex electronic properties and the coupled degrees of freedom. Among the perovskite oxides family, LaMO3 (M = Ti-Ni) allows an M-dependent systematic study of the electronic structure within the same-structure-family motif. While most of the studies have been focusing on the 3d TMs and oxygen sites, the role of the rare-earth site has been far less explored. In this work, we use resonant inelastic X-ray scattering (RIXS) at the lanthanum N4,5 edges and density functional theory (DFT) to investigate the hybridization mechanisms in LaMO3. We link the spatial-overlap-driven hybridization to energetic-overlap-driven hybridization by comparing the RIXS chemical shifts and the DFT band widths. The scope is extended to highly covalent Ruddlesden-Popper perovskite La2CuO4 by intercalating lanthanum atoms to rock-salt layers. Our work evidences an observable contribution of localized lanthanum 5p and 4f orbitals in the band structure.</p
A High-Entropy Oxide as High-Activity Electrocatalyst for Water Oxidation
High-entropy materials are an emerging pathway in the development of high-activity (electro)catalysts because of the inherent tunability and coexistence of multiple potential active sites, which may lead to earth-abundant catalyst materials for energy-efficient electrochemical energy storage. In this report, we identify how the multication composition in high-entropy perovskite oxides (HEO) contributes to high catalytic activity for the oxygen evolution reaction (OER), i.e., the key kinetically limiting half-reaction in several electrochemical energy conversion technologies, including green hydrogen generation. We compare the activity of the (001) facet of LaCr0.2Mn0.2Fe0.2Co0.2Ni0.2O3-δ with the parent compounds (single B-site in the ABO3 perovskite). While the single B-site perovskites roughly follow the expected volcano-type activity trends, the HEO clearly outperforms all of its parent compounds with 17 to 680 times higher currents at a fixed overpotential. As all samples were grown as an epitaxial layer, our results indicate an intrinsic composition-function relationship, avoiding the effects of complex geometries or unknown surface composition. In-depth X-ray photoemission studies reveal a synergistic effect of simultaneous oxidation and reduction of different transition metal cations during the adsorption of reaction intermediates. The surprisingly high OER activity demonstrates that HEOs are a highly attractive, earth-abundant material class for high-activity OER electrocatalysts, possibly allowing the activity to be fine-tuned beyond the scaling limits of mono- or bimetallic oxides