650 research outputs found

    Rhodium-Catalyzed Asymmetric Hydrogenation using Phosphoramidite Ligands

    Get PDF

    Rhodium-Catalyzed Asymmetric Hydrogenation using Phosphoramidite Ligands

    Get PDF

    Rhodium-Catalyzed Asymmetric Hydrogenation using Phosphoramidite Ligands

    Get PDF

    Cell permeabilisation and transport focused around oscillating microbubbles

    Get PDF
    The ultrasound-driven oscillation of a microbubble drives a steady streaming focused around the bubble. The study of individual bubbles attached to a wall shows vivid recirculations. When cells are in the vicinity of these bubbles, also used in medecine as contrast agent for ultrasound echography, they experience considerable shear rates. We introduce in the flow giant unilamelar lipid vesicles, acting as artificial cells. Rupture of the lipidic membrane with the opening of pores is revealed by high-speed camera recordings. A reversible permeation of the membrane wall can also be obtained, demonstrating at the micron scale the efficiency of microbubbles to deliver drugs in cells. The streaming flow of bubble on a surface can be further controlled, with the adjunction of a solid obstacle nearby: the flow turns to be directed. We will present a microfluidic device using the principle of bubble/obstacle doublets to locally transport small objets such as cells

    A versatile model for TCP bandwidth sharing in networks with heterogeneous users.

    Get PDF
    Enabled by the emergence of various access technologies (such as ADSL and wireless LAN), the number of users with high-speed access to the Internet is growing rapidly, and their expectation with respect to the quality-of-service of the applications has been increasing accordingly. With TCP being the ubiquitous underlying end-to-end control, this motivates the interest in easy-to-evaluate, yet accurate, performance models for a TCP-based network shared by multiple classes of users. Building on the vast body of existing models, we develop a novel versatile model that explicitly captures user heterogeneity, and takes into consideration dynamics at both the packet level and the flow level. It is described how the resulting multiple time-scale model can be numerically evaluated. Validation is done by using NS2 simulations as a benchmark. In extensive numerical experiments, we study the impact of heterogeneity in the round-trip times on user-level characteristics such as throughputs and flow transmission times, thus quantifying the resulting bias. We also investigate to what extent this bias is affected by the networks' `packet-level parameters', such as buffer sizes. We conclude by extending the single-link model in a straightforward way to a general network setting. Also in this network setting the impact of heterogeneity in round-trip times is numerically assesse

    Performance modeling of a bottleneck node in an IEEE 802.11 ad-hoc network

    Get PDF
    This paper presents a performance analysis of wireless ad-hoc networks, with IEEE 802.11 as the underlying Wireless LAN technology. WLAN has, due to the fair radio resource sharing at the MAC-layer, the tendency to share the capacity equally amongst the active nodes, irrespective of their loads. An inherent drawback of this sharing policy is that a node that serves as a relay-node for multiple flows is likely to become a bottleneck. This paper proposes to model such a bottleneck by a fluid-flow model. Importantly, this is a model at the flow-level: flows arrive at the bottleneck node, and are served according to the sharing policy mentioned above. Assuming Poisson initiations of new flow transfers, we obtain insightful, robust, and explicit expressions for characteristics related to the overall flow transfer time, the buffer occupancy, and the packet delay at the bottleneck node. The analysis is enabled by a translation of the buffer dynamics at the bottleneck node in terms of an M/G/1 queueing model. We conclude the paper by an assessment of the impact of alternative sharing policies (which can be obtained by the IEEE 802.11E version), in order to improve the performance of the bottleneck

    Performance analysis of differentiated resource-sharing in a wireless ad-hoc network

    Get PDF
    In this paper we model and analyze a relay node in a wireless ad-hoc network; the capacity available at this node is used to both transmit traffic from the source nodes (towards the relay node), and to serve traffic at the relay node (so that it can be forwarded to successor nodes). Clearly, when a specific node is used more heavily than others, it is prone to becoming a performance bottleneck. In this paper we consider the situation that the relay node obtains a share of the capacity that is m times as large as the share that each source node receives. The main performance metrics considered are the workload at the relay node and the average overall flow transfer time, i.e., the average time required to transmit a flow from a source node via the relay node to the destination. Our aim is to find expressions for these performance metrics for a general resource-sharing ratio m, as well as a general flow-size distribution. The analysis consists of the following steps. First, for the special case of exponential flow sizes we analyze the source-node dynamics, as well as the workload at the relay node by a fluid-flow queueing model. Then we observe from extensive numerical experimentation over a broad set of parameter values that the distribution of the number of active source nodes is actually insensitive to the flow-size distribution. Using this remarkable (empirical) result as an approximation assumption, we obtain explicit expressions for both the mean workload at the relay node and the overall flow transfer time, both for general flow-size distributions

    Performance evaluation of strategies for integration of elastic and stream traffic

    Get PDF
    This paper deals with the integration of `stream' traffic and `elastic' traffic in one single network, e.g. an ATM-based or an IP-based network. Here stream traffic refers to traffic with a certain bandwidth guarantee, whereas elastic traffic flows can adapt their rates to the link bandwidth left over by the stream flows. First, models are developed that describe different strategies for sharing link capacities between the stream and elastic flows. Then we give mathematical methods for obtaining performance measures, in particular call blocking probabilities and file transfer delays. Finally, these methods are used for assessing and comparing the efficiency gains achieved by the integration strategies

    General purpose models for intravenous anesthetics, the next generation for target-controlled infusion and total intravenous anesthesia?

    Get PDF
    PURPOSE OF REVIEW: There are various pharmacokinetic-dynamic models available, which describe the time course of drug concentration and effect and which can be incorporated into target-controlled infusion (TCI) systems. For anesthesia and sedation, most of these models are derived from narrow patient populations, which restricts applicability for the overall population, including (small) children, elderly, and obese patients. This forces clinicians to select specific models for specific populations. RECENT FINDINGS: Recently, general purpose models have been developed for propofol and remifentanil using data from multiple studies and broad, diverse patient groups. General-purpose models might reduce the risks associated with extrapolation, incorrect usage, and unfamiliarity with a specific TCI-model, as they offer less restrictive boundaries (i.e., the patient "doesn't fit in the selected model") compared with the earlier, simpler models. Extrapolation of a model can lead to delayed recovery or inadequate anesthesia. If multiple models for the same drug are implemented in the pump, it is possible to select the wrong model for that specific case; this can be overcome with one general purpose model implemented in the pump. SUMMARY: This article examines the usability of these general-purpose models in relation to the more traditional models.</p
    • 

    corecore