4 research outputs found

    Imaging in X-Linked Adrenoleukodystrophy

    No full text
    Magnetic resonance imaging (MRI) is the gold standard for the detection of cerebral lesions in X-linked adrenoleukodystrophy (ALD). ALD is one of the most common peroxisomal disorders and is characterized by a defect in degradation of very long chain fatty acids (VLCFA), resulting in accumulation of VLCFA in plasma and tissues. The clinical spectrum of ALD is wide and includes adrenocortical insufficiency, a slowly progressive myelopathy in adulthood, and cerebral demyelination in a subset of male patients. Cerebral demyelination (cerebral ALD) can be treated with hematopoietic cell transplantation (HCT) but only in an early (pre- or early symptomatic) stage and therefore active MRI surveillance is recommended for male patients, both pediatric and adult. Although structural MRI of the brain can detect the presence and extent of cerebral lesions, it does not predict if and when cerebral demyelination will occur. There is a great need for imaging techniques that predict onset of cerebral ALD before lesions appear. Also, imaging markers for severity of myelopathy as surrogate outcome measure in clinical trials would facilitate drug development. New quantitative MRI techniques are promising in that respect. This review focuses on structural and quantitative imaging techniques-including magnetic resonance spectroscopy, diffusion tensor imaging, MR perfusion imaging, magnetization transfer (MT) imaging, neurite orientation dispersion and density imaging (NODDI), and myelin water fraction imaging-used in ALD and their role in clinical practice and research opportunities for the future

    Postural Body Sway as Surrogate Outcome for Myelopathy in Adrenoleukodystrophy

    No full text
    Background: Myelopathy is the core clinical manifestation of adrenoleukodystrophy (ALD), which is the most common peroxisomal disorder. Development of therapies requires sensitive and clinically relevant outcome measures. Together with spastic paraparesis, balance disturbance is the main cause of disability from myelopathy in ALD. In this cross-sectional study, we evaluated whether postural body sway – a measure of balance – could serve as a surrogate outcome in clinical trials. Methods: Forty-eight male ALD patients and 49 age-matched healthy male controls were included in this study. We compared sway amplitude and sway path of ALD patients to controls. We then correlated the body sway parameters showing the largest between-group differences with clinical measures of severity of myelopathy. To correct for age, we performed multiple linear regression analysis with age and severity of myelopathy as independent variables. Results: All body sway parameters were significantly higher in patients than in controls, with medium to large effect sizes (r = 0.43–0.66, p < 0.001). In the subgroup of asymptomatic patients, body sway amplitude was also higher, but the difference with controls was smaller than for symptomatic patients (effect size r = 0.38–0.46). We found moderate to strong correlations between body sway amplitude and clinical severity of myelopathy (r = 0.40–0.79, p < 0.005). After correction for age, severity of myelopathy was a significant predictor of body sway amplitude in all regression models. Conclusions: These results indicate that postural body sway may serve as a surrogate outcome for myelopathy in ALD. Such outcomes are important to evaluate new therapies in clinical trials. Further longitudinal studies are needed and ongoing in this cohort

    Plasma NfL and GFAP as biomarkers of spinal cord degeneration in adrenoleukodystrophy

    No full text
    Objective: To explore the potential of neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) as biomarkers of spinal cord degeneration in adrenoleukodystrophy, as objective treatment-outcome parameters are needed. Methods: Plasma NfL and GFAP levels were measured in 45 male and 47 female ALD patients and compared to a reference cohort of 73 healthy controls. For male patients, cerebrospinal fluid (CSF) samples (n = 33) and 1-year (n = 39) and 2-year (n = 18) follow-up data were also collected. Severity of myelopathy was assessed with clinical parameters: Expanded Disability Status Scale (EDSS), Severity Scoring system for Progressive Myelopathy (SSPROM), and timed up-and-go. Results: NfL and GFAP levels were higher in male (P < 0.001, effect size (partial ƞ2) NfL = 0.49, GFAP = 0.13) and female (P < 0.001, effect size NfL = 0.19, GFAP = 0.23) patients compared to controls; levels were higher in both symptomatic and asymptomatic patients. In male patients, NfL levels were associated with all three clinical parameters of severity of myelopathy (EDSS, SSPROM, and timed up-and go), while GFAP in male and NfL and GFAP in female patients were not. Changes in clinical parameters during follow-up did not correlate with (changes in) NfL or GFAP levels. Plasma and CSF NfL were strongly correlated (r = 0.60, P < 0.001), but plasma and CSF GFAP were not (r = 0.005, P = 0.98). Interpretation: Our study illustrates the potential of plasma NfL as biomarker of spinal cord degeneration in adrenoleukodystrophy, which was superior to plasma GFAP in our cohort
    corecore