12 research outputs found

    Setting a baseline for global urban virome surveillance in sewage

    Get PDF
    The rapid development of megacities, and their growing connectedness across the world is becoming a distinct driver for emerging disease outbreaks. Early detection of unusual disease emergence and spread should therefore include such cities as part of risk-based surveillance. A catch-all metagenomic sequencing approach of urban sewage could potentially provide an unbiased insight into the dynamics of viral pathogens circulating in a community irrespective of access to care, a potential which already has been proven for the surveillance of poliovirus. Here, we present a detailed characterization of sewage viromes from a snapshot of 81 high density urban areas across the globe, including in-depth assessment of potential biases, as a proof of concept for catch-all viral pathogen surveillance. We show the ability to detect a wide range of viruses and geographical and seasonal differences for specific viral groups. Our findings offer a cross-sectional baseline for further research in viral surveillance from urban sewage samples and place previous studies in a global perspective

    Estrogenicity and metabolism of prenylated flavonoids and isoflavonoids

    No full text
    Binding of (prenylated) flavonoids and isoflavonoids to the human estrogen receptors (hERs) might result in beneficial health effects in vivo. To understand structure-activity relationships of prenylated (iso)flavonoids towards the hERs, prenylated (iso)flavonoids were purified from extracts of licorice roots and elicited soybean seedlings. It was observed that prenylation can modulate estrogenicity. Unprenylated, chain and ÎŽ-position pyran prenylated (iso)flavonoids show an agonistic mode of action, whereas α/ÎČ-position pyran, α/ÎČ-position furan and double chain prenylated (iso)flavonoids show an antagonistic mode of action towards hERα in the yeast bioassay. The mode of estrogenic action of prenylated (iso)flavonoids could be related to structural features of the hER. In particular, the increase in length of α/ÎČ-position pyran prenylated compounds was related to indirect antagonism. It was also shown that heat and acid affected the stability of 6a-hydroxy-pterocarpans, converting them into their respective 6a,11a-pterocarpenes and consequently modulate their estrogenicity. Six prenylated isoflavonoids acted as SERMs and eight prenylated isoflavonoids showed ER subtype-selective behavior. The kind of prenylation (chain, furan or pyran) was most important for determining SERM activity, whereas additionally the backbone structure, i.e. the presence of an additional D-ring, was of importance for determining ER subtype-selectivity. To determine structure-metabolism relationships, in vitro conversion of purified prenylated (iso)flavonoids by liver enzymes was studied. These compounds can be extensively metabolized by phase I and II enzymes. A glucuronidation yield between 70-80% was observed. It was also shown that pyran and chain prenylation gave more complex hydroxylation patterns with 4 or more than 6 hydroxyl isomers, respectively, compared to unprenylated compounds (only 1 hydroxyl isomer)

    Multiclass screening in urine by comprehensive two-dimensional liquid chromatography time of flight mass spectrometry for residues of sulphonamides, beta-agonists and steroids

    No full text
    Nowadays routine residue monitoring involves the analysis of many compounds from different classes, mainly in urine. In the past two decades, developments heavily focused on the use of mass spectrometers (MS) and faster and more sensitive MS detectors have reached the market. However, chromatographic separation (CS) was rather ignored and the cognate developments in CS were not in line. As a result, residue analysis did not improve to the extent anticipated. CS by LC x LC is a promising technique and will enable a further increase in the range of compounds and compound classes that can be detected in a single run. In the present study, a self-built LC x LC system, using a 10 port valve, was connected to a single quadrupole MS with electrospray interface. Standards containing a mixture of sulphonamides, ÎČ-agonists and (steroid) hormones, 53 compounds, in total, were analysed. Results demonstrated that these compounds were well separated and could be detected at low levels in urine, i.e. limit of detection (LOD) from 1 ”g L−1 for most ÎČ-agonists to 10 ”g L−1 for some sulphonamides and most hormones. To enhance the sensitivity, optimisation was performed on an advanced commercial LC x LC system connected to a full scan accurate MS. This ultimately resulted in a fast high throughput untargeted method, including a simple sample clean-up in a 96-well format, for the analysis of urine samples.</p

    Structural Changes of 6a-Hydroxy-Pterocarpans Upon Heating Modulate Their Estrogenicity

    No full text
    The isoflavonoid composition of an ethanolic extract of fungus-treated soybean sprouts was strongly altered by a combined acid/heat treatment. UHPLC-MS analysis showed that 6a-hydroxy-pterocarpans were completely converted to their respective, more stable, 6a,11a-pterocarpenes, whereas other isoflavonoids, from the isoflavone and coumestan subclasses, were affected to a much lesser extent (loss of ~15%). Subsequently, mixtures enriched in prenylated 6a-hydroxy-pterocarpans (pools of glyceollin I/II/III and glyceollin IV/VI) or prenylated 6a,11a-pterocarpenes (pools of dehydroglyceollin I/II/III and dehydroglyceollin IV/VI) were purified, and tested for activity on both human estrogen receptors (ERa and ERß). In particular, the response toward ERa changed, from agonistic for glyceollins to antagonistic for dehydroglyceollins. Toward ERß a decrease in agonistic activity was observed. These results indicate that the introduction of a double bond with the concomitant loss of a hydroxyl group in 6a-hydroxy-pterocarpans extensively modulates their estrogenic activity

    Multiclass screening in urine by comprehensive two-dimensional liquid chromatography time of flight mass spectrometry for residues of sulphonamides, beta-agonists and steroids

    No full text
    Nowadays routine residue monitoring involves the analysis of many compounds from different classes, mainly in urine. In the past two decades, developments heavily focused on the use of mass spectrometers (MS) and faster and more sensitive MS detectors have reached the market. However, chromatographic separation (CS) was rather ignored and the cognate developments in CS were not in line. As a result, residue analysis did not improve to the extent anticipated. CS by LC x LC is a promising technique and will enable a further increase in the range of compounds and compound classes that can be detected in a single run. In the present study, a self-built LC x LC system, using a 10 port valve, was connected to a single quadrupole MS with electrospray interface. Standards containing a mixture of sulphonamides, ÎČ-agonists and (steroid) hormones, 53 compounds, in total, were analysed. Results demonstrated that these compounds were well separated and could be detected at low levels in urine, i.e. limit of detection (LOD) from 1 ”g L−1 for most ÎČ-agonists to 10 ”g L−1 for some sulphonamides and most hormones. To enhance the sensitivity, optimisation was performed on an advanced commercial LC x LC system connected to a full scan accurate MS. This ultimately resulted in a fast high throughput untargeted method, including a simple sample clean-up in a 96-well format, for the analysis of urine samples.</p

    Chemical food safety hazards in circular food systems: a review

    No full text
    Food production has increasingly become effective but not necessarily sustainable. Transitioning toward circular production systems aiming to minimize waste and reuse materials is one of the means to obtain a more sustainable food production system. However, such a circular food production system can also lead to the accumulation and recirculation of chemical hazards. A literature review was performed to identify potential chemical hazards related to the use of edible and non-edible resources in agriculture and horticulture, and edible plant and animal by-products in feed production. The review revealed that limited information was available on the chemical hazards that could occur when reusing crop residues in circular agriculture. Frequently mentioned hazards present in edible and non-edible resources are heavy metals, process and environmental contaminants, pesticides and pharmaceuticals. For feed, natural toxins and pharmaceutical residues are of potential concern. Studies, furthermore, indicated that plants are capable of taking up chemical hazards when grown on contaminated soil. The presence of chemical hazards in manure, sewage sludge, crop residues, and animal by-products may lead to accumulation in a circular food production system. Therefore, it is relevant to identify these hazards prior to application in food production and, if needed, take precautionary measures to prevent food safety risks

    The persistence of a broad range of antibiotics during calve, pig and broiler manure storage

    No full text
    After administration to livestock, a large fraction of antibiotics are excreted unchanged via excreta and can be transferred to agricultural land. For effective risk assessment a critical factor is to determine which antibiotics can be expected in the different environmental compartments. After excretion, the first relevant compartment is manure storage. In the current study, the fate of a broad scope of antibiotics (n = 46) during manure storage of different livestock animals (calves, pigs, broilers) was investigated. Manure samples were fortified with antibiotics and incubated during 24 days. Analysis was carried out by LC-MS. The dissipation of the antibiotics was modelled based on the recommendations of FOCUS working group. Sulphonamides relatively quickly dissipate in all manure types, with a DT90 of in general between 0.2 and 30 days. Tetracyclines (DT90 up to 422 days), quinolones (DT90 100–5800 days), macrolides (DT90 18–1000 days), lincosamides (DT90 135–1400 days) and pleuromutilins (DT90 of 49–1100 days) are in general much more persistent, but rates depend on the manure type. Specifically lincomycin, pirlimycin, tiamulin and most quinolones are very persistent in manure with more than 10% of the native compound remaining after a year in most manure types. For all compounds tested in the sub-set, except the macrolides, the dissipation was an abiotic process. Based on the persistence and current frequency of use, oxytetracycline, doxycycline, flumequine and tilmicosin can be expected to end up in environmental compartments. Ecotoxicological data should be used to further prioritize these compounds.</p

    Review of food safety hazards in circular food systems in Europe

    No full text
    European food production systems have become very efficient in terms of high yield, quality and safety. However, these production systems are not sustainable since, amongst other reasons, a significant proportion of the production is wasted or lost in the supply chain. One of the strategies of the European Union is to achieve climate neutrality by moving towards a circular economy with better waste management. This includes, reducing food waste and losses, and reusing or recycling by-products of the food and feed production systems. A circular economy would greatly improve the sustainability of the European food systems, but attention must be paid to the emergence of (new) food safety hazards. New or not well-known hazards can occur because by-products are reintroduced into the system or new processing steps are used for recycling, and/or known hazards can accumulate in the food production chain due to the reuse of (by-)products. This review addresses food safety hazards in the circular biobased economy, covering the domains of plant production, animal production, aquaculture, and packaging. Instead of an exhaustive list of all potential hazards, example cases of circular food production systems are given, highlighting the known and potential emerging food safety hazards. Current literature covering emerging food safety hazards in the circular economy shows to be limited. Therefore, more research is needed to identify food safety hazards, to measure the accumulation and the distribution of such hazards in the food and feed production systems, and to develop control and mitigation strategies. We advocate a food safety by design approach
    corecore