19 research outputs found

    Changes in intracellular folate metabolism during high-dose methotrexate and Leucovorin rescue therapy in children with acute lymphoblastic leukemia

    Get PDF
    Background Methotrexate (MTX) is an important anti-folate agent in pediatric acute lymphoblastic leukemia (ALL) treatment. Folinic acid rescue therapy (Leucovorin) is administered after MTX to reduce toxicity. Previous studies hypothesized that Leucovorin could ‘rescue’ both normal healthy cells and leukemic blasts from cell death. We assessed whether Leucovorin is able to restore red blood cell folate levels after MTX. Methods We prospectively determined erythrocyte folate levels (5-methyltetrahydrofolate (THF) and non-methyl THF) and serum folate levels in 67 children with ALL before start (T0) and after stop (T1) of HD-MTX and Leucovorin courses. Results Erythrocyte folate levels increased between T0 and T1 (mean ± SD: 416.7 ± 145.5 nmol/L and 641.2 ± 196.3 nmol/L respectively, pT genotype. Conclusion Intracellular folate levels accumulate after HD-MTX and Leucovorin therapy in children with ALL, suggesting that Leucovorin restores the intracellular folate pool. Future studies are necessary to assess concomitant lower uptake of MTX

    Early life poly- and perfluoroalkyl substance levels and adiposity in the first 2 years of life

    Get PDF
    Importance: Poly- and perfluoroalkyl substances (PFASs) are nondegradable, man-made chemicals. They accumulate in humans with potential harmful effects, especially in susceptible periods of human development, such as the first months of life. We found that, in our cohort, exclusively breastfed (EBF) infants had 3 times higher PFAS plasma levels compared with exclusively formula-fed (EFF) infants at the age of 3 months. Thus, PFASs could potentially reduce the health benefits of breastfeeding. Objective: We investigated the associations between PFAS levels at the age of 3 months and accelerated gain in fat mass during the first 6 months of life, body composition at 2 years, and whether these associations differ between EBF and EFF infants. Setting: In 372 healthy term-born infants, we longitudinally assessed anthropometrics, body composition (by air-displacement plethysmography and dual-energy X-ray absorptiometry), and visceral and subcutaneous fat (by abdominal ultrasound) until the age of 2 years. Measures: The plasma levels of 5 individual PFASs were determined by liquid chromatography–electrospray ionization–tandem mass spectrometry at the age of 3 months. Main outcomes: We studied associations between PFAS levels and outcomes using multiple regression analyses. Results: Higher early life plasma perfluorooctanoic acid and total PFAS levels were associated with an accelerated gain in fat mass percentage [FM%; &gt;0.67 SD score (SDS)] during the first 6 months of life. Higher early life PFAS levels were associated with lower fat-free mass (FFM) SDS at the age of 2 years, but not with total FM% SDS at 2 years. Furthermore, we found opposite effects of PFAS levels (negative) and exclusive breastfeeding (positive) at the age of 3 months on FFM SDS at 2 years. Conclusion: Higher PFAS levels in early life are associated with accelerated gains in FM% during the first 6 months of life and with lower FFM SDS at the age of 2 years, which have been associated with an unfavorable body composition and metabolic profile later in life. Our findings warrant further research with longer follow-up times.</p

    Association between methylation potential and nutrient metabolism throughout the reproductive cycle of sows

    No full text
    DNA methylation is an important epigenetic strategy for embryo development and survival. The one-carbon metabolism can be disturbed by inadequate provision of dietary methyl donors. Because of the continuous selection for larger litters, it is relevant to explore if highly prolific sows might encounter periods of methyl donor deficiency throughout their reproductive cycles. This study, therefore, assesses the fluctuation(s) in methylation potential (MP) and aims to link possible methyl donor deficiencies to nutrient metabolism. In total, 15 hybrid sows were followed from weaning of the previous reproductive cycle (d-5) to weaning of the present cycle. Blood samples were taken at d-5, 0, 21, 42, 63, 84 and d108 of gestation, the day of parturition (d115), two weeks of lactation (d129) and at weaning (d143). Blood plasma samples were analysed for S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), free methionine, free glycine, acetylcarnitine and 3-hydroxybutyrylcarnitine. Serum samples were analysed for urea and creatinine. Generally, MP (i.e. ratio SAM:SAH) increased throughout gestation (p = 0.009), but strongly fluctuated in the period around parturition and weaning. From d108 to parturition, absolute plasma levels of SAM (p < 0.001), SAH (p = 0.031) and methionine (p = 0.001) increased. The first two weeks of lactation were characterised by an increase in MP (p = 0.039) due to a remaining high value of SAM and a distinct decrease in SAH (p = 0.008). During the last two weeks of lactation, MP decreased (p = 0.038) due to a decrease in SAM (p < 0.001) and a stable value for SAH. The methylation reactions seem to continue after weaning, a period crucial for the follicular and embryonic development of the subsequent litter. This study thus demonstrates that the methylation status fluctuates substantially throughout a sow's reproductive cycle, and further research is needed to identify the factors affecting methylation status

    New developments in the standardization of total prostate-specific antigen

    No full text
    Objective : Analytical evaluation of the calibration of three recently launched assays for the measurement of total prostate-specific antigen, i.e., IMx Total PSA (Abbott), Elecsys PSA (Roche), and IMMULITE 3rd Generation PSA (DPC). Design and methods : For accuracy assessment two reference materials were applied namely, Stanford 90:10 PSA Calibrator and Certified Reference Material 613 Prostate-Specific Antigen. Dilutions of these preparations were analyzed with all assays. In addition, clinical specimens from known prostate cancer or benign prostate hyperplasia patients and samples taken from an ongoing prostate cancer screening study were used for comparison. Results : Application of the Stanford Calibrator revealed results well within 10% of the calculated values for all assays. Regarding the CRM Calibrator only the IMx Total PSA proved to approach the line of identity. The IMMULITE results differed about 40% and the Elecsys about 18% from the calculated values. The comparison with clinical specimens showed statistically different results for the combination IMMULITE-IMx and for IMMULITE-Elecsys. The regression lines for both collections were: y(IMx) = 0.86x (IMMULITE) + 0.12 (n = 104, r = 0.970, S(y/x) = 0.883 μg/L) and y(Elecsys) = 0.98x(IMMULITE) + 0.38 (n = 97, r = 0.976, S(y/x) = 0.733 μg/L). In the lower measuring range (PSA < 5.0 μg/L) as measured with the screening samples (n = 43), these differences were less pronounced. Conclusion : In analytical sense a difference was found for both reference preparations in the assays studied. Clinically, despite improvements in methodology, results for total prostate-specific antigen are still not interchangeable. The possible consequences need to be elaborated

    Global DNA (hydroxy)methylation is stable over time under several storage conditions and temperatures

    No full text
    Background: Epigenetic markers are often quantified and related to disease in stored samples. While, effects of storage on stability of these markers have not been thoroughly examined. In this longitudinal study, we investigated the influence of storage time, material, temperature, and freeze-thaw cycles on stability of global DNA (hydroxy)methylation. Methods: EDTA blood was collected from 90 individuals. Blood (n = 30, group 1) and extracted DNA (n = 30, group 2) were stored at 4°C, −20°C and −80°C for 0, 1 (endpoint blood 4°C), 6, 12 or 18 months. Additionally, freeze-thaw cycles of blood and DNA samples (n = 30, group 3) were performed over three days. Global DNA methylation and hydroxymethylation (mean ± SD) were quantified using liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS) with between-run precision of 2.8% (methylation) and 6.3% (hydroxymethylation). Effects on stability were assessed using linear mixed models. Results: global DNA methylation was stable over 18 months in blood at −20°C and −80°C and DNA at 4°C and −80°C. However, at 18 months DNA methylation from DNA stored at −20°C relatively decreased −6.1% compared to baseline. Global DNA hydroxymethylation was more stable in DNA samples compared to blood, independent of temperature (p = 0.0131). Stability of global DNA methylation and hydroxymethylation was not affected up to three freeze–thaw cycles. Conclusion: Global DNA methylation and hydroxymethylation stored as blood and DNA can be used for epigenetic studies. The relevance of  small differences occuring during storage depend on the expected effect size and research question

    Global DNA (hydroxy)methylation is stable over time under several storage conditions and temperatures

    No full text
    Background: Epigenetic markers are often quantified and related to disease in stored samples. While, effects of storage on stability of these markers have not been thoroughly examined. In this longitudinal study, we investigated the influence of storage time, material, temperature, and freeze-thaw cycles on stability of global DNA (hydroxy)methylation. Methods: EDTA blood was collected from 90 individuals. Blood (n = 30, group 1) and extracted DNA (n = 30, group 2) were stored at 4°C, −20°C and −80°C for 0, 1 (endpoint blood 4°C), 6, 12 or 18 months. Additionally, freeze-thaw cycles of blood and DNA samples (n = 30, group 3) were performed over three days. Global DNA methylation and hydroxymethylation (mean ± SD) were quantified using liquid chromatography–electrospray ionization–tandem mass spectrometry (LC-ESI-MS/MS) with between-run precision of 2.8% (methylation) and 6.3% (hydroxymethylation). Effects on stability were assessed using linear mixed models. Results: global DNA methylation was stable over 18 months in blood at −20°C and −80°C and DNA at 4°C and −80°C. However, at 18 months DNA methylation from DNA stored at −20°C relatively decreased −6.1% compared to baseline. Global DNA hydroxymethylation was more stable in DNA samples compared to blood, independent of temperature (p = 0.0131). Stability of global DNA methylation and hydroxymethylation was not affected up to three freeze–thaw cycles. Conclusion: Global DNA methylation and hydroxymethylation stored as blood and DNA can be used for epigenetic studies. The relevance of  small differences occuring during storage depend on the expected effect size and research question

    Longitudinal poly- and perfluoroalkyl substances (PFAS) levels in Dutch infants

    Get PDF
    Background and aims: Per- and polyfluoroalkyl substances (PFAS) are a potential hazard for public health. These man-made-chemicals are non-degradable with an elimination half-life of multiple years, causing accumulation in the environment and humans. Rodent studies demonstrated that PFAS are harmful, especially when present during the critical window in the first months of life. Because longitudinal data during infancy are limited, we investigated longitudinal plasma levels in infants aged 3 months and 2 years and its most important determinants. Methods: In 369 healthy term-born Dutch infants, we determined plasma PFOS, PFOA, PFHxS, PFNA and PFDA levels at age 3 months and 2 years, using liquid chromatography-electrospray-ionization-tandem-mass-spectrometry (LC-ESI-MS/MS). We studied the associations with maternal and child characteristics by multiple regression models. Results: At age 3 months, median plasma levels of PFOS, PFOA, PFHxS, PFNA and PFDA were 1.48, 2.40, 0.43, 0.23 and 0.07 ng/mL, resp. Levels decreased slightly until age 2 years to 1.30, 1.81, 0.40, 0.21 and 0.08 ng/mL, resp. Maternal age, first born, Caucasian ethnicity and exclusive breastfeeding were associated with higher infant's plasma levels at age 3 months. Levels at 3 months were the most important predictor for PFAS levels at age 2 years. Infants with exclusive breastfeeding during the first 3 months of life (EBF) had 2–3 fold higher levels throughout infancy compared to infants with exclusive formula feeding (EFF), with PFOA levels at 3 months 3.72 ng/mL versus 1.26 ng/mL and at 2 years 3.15 ng/mL versus 1.22 ng/mL, respectively. Conclusion: Plasma PFAS levels decreased only slightly during infancy. Higher levels at age 3 months were found in Caucasian, first-born infants from older mothers and throughout infancy in EBF-infants. Our findings indicate that trans-placental transmission and breastfeeding are the most important determinants of PFAS exposure in early life

    Poly- and perfluoroalkyl substances (PFAS) exposure through infant feeding in early life

    Get PDF
    Background and aims: Per- and polyfluoroalkyl substances (PFAS) are non-degradable, man-made-chemicals with an elimination half-life of multiple years, causing accumulation in the environment and humans with potential harmful effects. However, longitudinal PFAS levels in human milk, daily PFAS intake and the association with infant plasma PFAS levels have never been reported. We investigated longitudinal PFOA and PFOS levels in human milk and the daily PFAS intake through infant feeding in the first 3 months of life, the most important determinants and the correlation with PFAS plasma levels at age 3 months and 2 years. Methods: In 372 healthy term-born Dutch infants, we determined PFOA and PFOS levels in human milk given at age 1 and 3 months, in 6 infant formula brands and in infant plasma at 3 months and 2 years, using liquid-chromatography-electrospray-ionization-tandem-mass-spectrometry(LC-ESI-MS/MS). We studied the associations between daily PFAS intake and predictive characteristics by multiple regression models. Results: PFOA and PFOS levels in human milk decreased between 1 and 3 months after delivery, regardless whether breastfeeding was given exclusively(EBF) or in combination with formula feeding. PFOA and PFOS could not be detected in any formula feeding. Daily PFAS intake(ng/kg) was highest in EBF-infants. Higher amount of human milk, older maternal age, lower parity and first-time breastfeeding were associated with higher daily intake. Daily PFAS intake in early life was strongly correlated with PFAS plasma levels at age 3 months and 2 years(R = 0.642–0.875, p < 0.001). Conclusions: Human milk contains PFOA and PFOS, in contrast to formula feeding. Daily PFOA and PFOS intake in early life is highest in exclusively breastfed infants and it is highly correlated with infant's plasma levels throughout infancy. Our findings show that breastfeeding is an important PFAS exposure pathway in the first months of life, with unknown but potential adverse effects. Knowing the important health benefits of breastfeeding, our findings warrant more research about the health outcomes in later life

    Inhibition of Tissue-Nonspecific Alkaline Phosphatase Attenuates Ectopic Mineralization in the Abcc6

    No full text
    Pseudoxanthoma elasticum (PXE), a prototype of heritable ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter ABCC6. It was recently shown that the absence of ABCC6-mediated adenosine triphosphate release from the liver and, consequently, reduced inorganic pyrophosphate levels underlie the pathogenesis of PXE. Given that tissue-nonspecific alkaline phosphatase (TNAP), encoded by ALPL, is the enzyme responsible for degrading inorganic pyrophosphate, we hypothesized that reducing TNAP levels either by genetic or pharmacological means would lead to amelioration of the ectopic mineralization phenotype in the Abcc
    corecore