165 research outputs found

    Timing of Pre-Operative Beta-Blocker Treatment in Vascular Surgery Patients Influence on Post-Operative Outcome

    Get PDF
    ObjectivesThis study evaluated timing of β-blocker initiation before surgery and its relationship with: 1) pre-operative heart rate and high-sensitivity C-reactive-protein (hs-CRP) levels; and 2) post-operative outcome.BackgroundPerioperative guidelines recommend β-blocker initiation days to weeks before surgery, on the basis of expert opinions.MethodsIn 940 vascular surgery patients, pre-operative heart rate and hs-CRP levels were recorded, next to timing of β-blocker initiation before surgery (0 to 1, >1 to 4, >4 weeks). Pre- and post-operative troponin-T measurements and electrocardiograms were performed routinely. End points were 30-day cardiac events (composite of myocardial infarction and cardiac mortality) and long-term mortality. Multivariate regression analyses, adjusted for cardiac risk factors, evaluated the relation between duration of β-blocker treatment and outcome.ResultsThe β-blockers were initiated 0 to 1, >1 to 4, and >4 weeks before surgery in 158 (17%), 393 (42%), and 389 (41%) patients, respectively. Median heart rate at baseline was 74 (±17) beats/min, 70 (±16) beats/min, and 66 (±15) beats/min (p < 0.001; comparing treatment initiation >1 with <1 week pre-operatively), and hs-CRP was 4.9 (±7.5) mg/l, 4.1 (±.6.0) mg/l, and 4.5 (±6.3) mg/l (p = 0.782), respectively. Treatment initiated >1 to 4 or >4 weeks before surgery was associated with a lower incidence of 30-day cardiac events (odds ratio: 0.46, 95% confidence interval [CI]: 0.27 to 0.76, odds ratio: 0.48, 95% CI: 0.29 to 0.79) and long-term mortality (hazard ratio: 0.52, 95% CI: 0.21 to 0.67, hazard ratio: 0.50, 95% CI: 0.25 to 0.71) compared with treatment initiated <1 week pre-operatively.ConclusionsOur results indicate that β-blocker treatment initiated >1 week before surgery is associated with lower pre-operative heart rate and improved outcome, compared with treatment initiated <1 week pre-operatively. No reduction of median hs-CRP levels was observed in patients receiving β-blocker treatment >1 week compared with patients in whom treatment was initiated between 0 and 1 week before surgery

    FcgammaR expression on macrophages is related to severity and chronicity of synovial inflammation and cartilage destruction during experimental immune-complex-mediated arthritis (ICA)

    Get PDF
    INTRODUCTION: Fcγ receptors (FcγRs) present on cells of the haematopoietic lineage communicate with IgG-containing immune complexes that are abundant in the synovial tissue of patients with rheumatoid arthritis (RA). In mice, three classes of FcγR (RI, RII, and RIII) have been described. Binding of these receptors leads to either activation (FcγRI and RIII) or deactivation (FcγRII) of intracellular transduction pathways. Together, the expression of activating and inhibitory receptors is thought to drive immune-complex-mediated diseases. Earlier studies in our laboratory showed that macrophages of the synovial lining are of utmost importance in the onset and propagation of immune-complex-driven arthritic diseases. Selective depletion of macrophages in the joint downregulated both inflammation and cartilage destruction. As all three classes of FcγR are expressed on synovial macrophages, these cells are among the first that come in contact with immune complexes deposited in the joint. Recently, we observed that when immune complexes were injected into the knee joints of mice, strains susceptible to collagen-type-II arthritis (DBA/1, B10.RIII) developed more severe arthritis than nonsusceptible strains did, or even developed chronic arthritis. One reason why these strains are more susceptible might be their higher levels of FcγRs on macrophage membranes. To test this hypothesis, we investigated the role of FcγRs in inflammation and cartilage damage during immune-complex-mediated arthritis (ICA). First, we studied arthritis and subsequent cartilage damage in mice lacking functional FcγRI and RIII (FcR γ-chain(-/-) mice). Next, DBA/1 mice, which are prone to develop collagen-type-II arthritis (`collagen-induced arthritis'; CIA) and are hypersensitive to immune complexes, were compared with control C57BL/6 mice as regards cartilage damage and the expression and function of FcγRs on their macrophages. AIMS: To examine whether FcγR expression on macrophages is related to severity of synovial inflammation and cartilage destruction during immune-complex-mediated joint inflammation. METHODS: ICA was induced in three strains of mice (FcR γ-chain(-/-), C57BL/6, and DBA/1, which have, respectively, no functional FcγRI and RIII, intermediate basal expression of FcγRs, and high basal expression of FcγRs) by passive immunisation using rabbit anti-lysozyme antibodies, followed by poly-L-lysine lysozyme injection into the right knee joint 1 day later. In other experiments, streptococcal-cell-wall (SCW)- or zymosan-induced arthritis was induced by injecting SCW (25 μg) or zymosan (180 μg) directly into the knee joint. At several time points after arthritis induction, knee joints were dissected and studied either histologically (using haematoxylin/eosin or safranin O staining) or immuno-histochemically. The arthritis severity and the cartilage damage were scored separately on an arbitrary scale of 0-3. FcγRs were immunohistochemically detected using the monoclonal antibody 2.4G2, which detects both FcγRII and RIII. Deposition of IgG and C3c in the arthritic joint tissue was also detected immunohistochemically. Expression of FcγRs by murine peritoneal macrophages was measured using a fluorescence-activated cell sorter (FACS). Peritoneal macrophages were stimulated using heat-aggregated gamma globulins (HAGGs), and production of IL-1 was measured using a bioassay. To assess the levels of IL-1 and its receptor antagonist (IL-1Ra) during arthritis, tissue was dissected and washed in RPMI medium. Washouts were tested for levels of IL-1 and IL-1Ra using radioimmunoassay and enzyme-linked immunosorbent assay. mRNA was isolated from the tissue, and levels of macrophage inflammatory protein (MIP)-2, monocyte chemoattractant protein (MCP)-1, IL-1, and IL-1Ra were determined using semiquantitative reverse-transcription polymerase chain reaction (RT-PCR). RESULTS: ICA induced in knee joints of C57BL/6 mice caused a florid inflammation at day 3 after induction. To investigate whether this arthritis was FcγR-mediated, ICA was induced in FcR γ-chain(-/-) mice, which lack functional FcγRI and RIII. At day3, virtually no inflammatory cells were found in their knee joints. Levels of mRNA of IL-1, IL-1Ra, MCP-1, and MIP-2, which are involved in the onset of this arthritis, were significantly lower in FcR γ-chain(-/-) mice than in control C57BL/6 mice. Levels of IL-1 protein were also measured. At 6 h after ICA induction, FcR γ-chain(-/-) mice and control C57BL/6 mice showed similar IL-1 production as measured by protein level. By 24 h after induction, however, IL-1 production in the FcR γ-chain(-/-) mice was below the detection limit, whereas the controls were still producing a significant amount. To investigate whether the difference in reaction to immune complexes between the DBA/1 and C57BL/6 mice might be due to variable expression of FcγRs in the knee joint, expression in situ of FcγRs in naïve knee joints of these mice was determined. The monoclonal antibody 2.4G2, which detects both FcγRII and RIII, stained macrophages from the synovial lining of DBA/1 mice more intensely than those from C57BL/6 mice. This finding suggests a higher constitutive expression of FcγRs by macrophages of the autoimmune-prone DBA/1 mice. To quantify the difference in FcγR expression on macrophages of the two strains, we determined the occurrence of FcγRs on peritoneal macrophages by FACS analysis. The levels of FcγR expressed by macrophages were twice as high in the DBA/1 mice as in the C57BL/6 mice (mean fluorescence, respectively, 440 ± 50 and 240 ± 30 intensity per cell). When peritoneal macrophages of both strains were stimulated with immune complexes (HAGGs), we found that the difference in basal FcγR expression was functional. The stimulated macrophages from DBA/1 mice had significantly higher IL-1α levels (120 and 135 pg/ml at 24 and 48 h, respectively) than cells from C57BL/6 mice (45 and 50 pg/ml, respectively). When arthritis was induced using other arthritogenic triggers than immune complexes (zymosan, SCW), all the mouse strains tested (DBA/1, FcR γ-chain(-/-), and C57BL/6) showed similar inflammation, indicating that the differences described above are found only when immune complexes are used to elicit arthritis. We next compared articular cartilage damage in arthritic joints of the three mouse strains FcR γ-chain(-/-), C57BL/6 (intermediate basal expression of FcγRs), and DBA/1 (high basal expression of FcγRs). Three indicators of cartilage damage were investigated: depletion of PGs, chondrocyte death, and erosion of the cartilage matrix. At day 3 after induction of ICA, there was no PG depletion in FcR γ-chain(-/-) mice, whereas PG depletion in the matrix of the C57BL/6 mice was marked and that in the arthritic DBA/1 mice was even greater. PG depletion was still massive at days 7 and 14 in the DBA/1 mice, whereas by day 14 the PG content was almost completely restored in knee joints of the C57BL/6 mice. Chondrocyte death and erosion of cartilage matrix, two indicators of more severe cartilage destruction, were significantly higher in the DBA/1 than in the C57BL/6 mice, while both indicators were completely absent in the FcR γ-chain(-/-) mice. Again, when arthritis was induced using other triggers (SCW, zymosan), all strains showed similar PG depletion and no chondrocyte death or matrix erosion. These findings underline the important role of immune complexes and FcγRs in irreversible cartilage damage. DISCUSSION: Our findings indicate that inflammation and subsequent cartilage damage caused by immune complexes may be related to the occurrence of FcγRs on macrophages. The absence of functional FcγRI and RIII prevented inflammation and cartilage destruction after induction of ICA, whereas high basal expression of FcγRs on resident joint macrophages of similarly treated mice susceptible to autoimmune arthritis was correlated with markedly more synovial inflammation and cartilage destruction. The difference in joint inflammation between the three strains was not due to different susceptibilities to inflammation per se, since intra-articular injection of zymosan or SCW caused comparable inflammation. Although extensive inflammatory cell mass was found in the synovium of all strains after intra-articular injection of zymosan, no irreversible cartilage damage (chondrocyte death or matrix erosion) was found. ICA induced in C57BL/6 and DBA/1 mice did cause irreversible cartilage damage at later time points, indicating that immune complexes and FcγRs play an important role in inducing irreversible cartilage damage. Macrophages communicate with immune complexes via Fcγ receptors. Absence of functional activating receptors completely abrogates the synovial inflammation, as was shown after ICA induction in FcR γ-chain(-/-) mice. However, the γ-chain is essential not only in FcγRI and RIII but also for FcεRI (found on mast cells) and the T cell receptor (TcR)-CD3 (Tcells) complex of γδT cells. However, T, B, or mast cells do not play a role in this arthritis that is induced by passive immunisation. Furthermore, this effect was not caused by a difference in clearance of IgG or complement deposition in the tissue. In this study, DBA/1 mice, which are susceptible to collagen-induced autoimmune arthritis and in a recent study have been shown to react hypersensitively to immune complexes, are shown to express higher levels of FcγRs on both synovial and peritoneal macrophages. Because antibodies directed against the different subclasses of FcγR are not available, no distinction could be made between FcγRII and RIII. Genetic differences in DBA/1 mice in genes coding for or regulating FcγRs may be responsible for altered FcγR expression. If so, these mouse strains would have a heightened risk for immune-complex-mediated diseases. To provide conclusive evidence for the roles of the various classes of FcγR during ICA, experiments are needed in which FcγRs are blocked with specific antibodies, or in which knockout mice lacking one specific class of FcγR are used. The only available specific antibody to FcγR (2.4G2) has a stimulatory effect on cells once bound to the receptor, and therefore cannot be used in blocking experiments. Experiments using specific knockout mice are now being done in our laboratory. Macrophages are the dominant type of cell present in chronic inflammation during RA and their number has been shown to correlate well with severe cartilage destruction. Apart from that, in humans, these synovial tissue macrophages express activating FcRs, mainly FcγIIIa, which may lead to activation of these macrophages by IgG-containing immune complexes. The expression of FcRs on the surface of these cells may have important implications for joint inflammation and severe cartilage destruction and therefore FCRs may constitute a new target for therapeutic intervention

    Levofloxacin pharmacokinetics in saliva as measured by a mobile microvolume UV spectrophotometer among people treated for rifampicin-resistant TB in Tanzania

    Get PDF
    Background: Early detection and correction of low fluoroquinolone exposure may improve treatment of MDR-TB. Objectives: To explore a recently developed portable, battery-powered, UV spectrophotometer for measuring levofloxacin in saliva of people treated for MDR-TB. Methods: Patients treated with levofloxacin as part of a regimen for MDR-TB in Northern Tanzania had serum and saliva collected concurrently at 1 and 4 h after 2 weeks of observed levofloxacin administration. Saliva levofloxacin concentrations were quantified in the field via spectrophotometry, while serum was analysed at a regional laboratory using HPLC. A Bayesian population pharmacokinetics model was used to estimate the area under the concentration-time curve (AUC(0-24)). Subtarget exposures of levofloxacin were defined by serum AUC(0-24) Results: Among 45 patients, 11 (25.6%) were women and 16 (37.2%) were living with HIV. Median AUC(0- 24) in serum was 140 (IQR = 102.4-179.09) mg.h/L and median AUC(0- 24) in saliva was 97.10 (IQR = 74.80-121.10) mg.h/L. A positive linear correlation was observed with serum and saliva AUC(0-24), and a receiver operating characteristic curve constructed to detect serum AUC(0- 24) below 80mg.h/L demonstrated excellent prediction [AUC 0.80 (95% CI = 0.62-0.94)]. Utilizing a saliva AUC(0- 24) cut-off of 91.6mg.h/L, the assay was 88.9% sensitive and 69.4% specific in detecting subtarget serum AUC(0- 24) values, including identifying eight of nine patients below target. Conclusions: Portable UV spectrophotometry as a point-of-care screen for subtarget levofloxacin exposure was feasible. Use for triage to other investigation or personalized dosing strategy should be tested in a randomized study

    Molecular astronomy of cool stars and sub-stellar objects

    Full text link
    The optical and infrared spectra of a wide variety of `cool' astronomical objects including the Sun, sunspots, K-, M- and S-type stars, carbon stars, brown dwarfs and extrasolar planets are reviewed. The review provides the necessary astronomical background for chemical physicists to understand and appreciate the unique molecular environments found in astronomy. The calculation of molecular opacities needed to simulate the observed spectral energy distributions is discussed

    Aggravated bone density decline following symptomatic osteonecrosis in children with acute lymphoblastic leukemia

    Get PDF
    Osteonecrosis and decline of bone density are serious side effects during and after treatment of childhood acute lymphoblastic leukemia. It is unknown whether osteonecrosis and low bone density occur together in the same patients, or whether these two osteogenic side-effects can mutually influence each other's development. Bone density and the incidence of symptomatic osteonecrosis were prospectively assessed in a national cohort of 466 patients with acute lymphoblastic leukemia (4-18 years of age) who were treated according to the dexamethasone-based Dutch Child Oncology Group-ALL9 protocol. Bone mineral density of the lumbar spine (BMDLS) (n= 466) and of the total body (BMDTB) (n=106) was measured by dual X-ray absorptiometry. Bone density was expressed as age-and gender-matched standard deviation scores. Thirty patients (6.4%) suffered from symptomatic osteonecrosis. At baseline, BMDLS and BMDTB did not differ between patients who did or did not develop osteonecrosis. At cessation of treatment, patients with osteonecrosis had lower mean BMDLS and BMDTB than patients without osteonecrosis (respectively, with osteonecrosis: -2.16 versus without osteonecrosis: -1.21, P</p

    Retardation of arsenic transport through a Pleistocene aquifer

    Get PDF
    Groundwater drawn daily from shallow alluvial sands by millions of wells over large areas of south and southeast Asia exposes an estimated population of over a hundred million people to toxic levels of arsenic1. Holocene aquifers are the source of widespread arsenic poisoning across the region2, 3. In contrast, Pleistocene sands deposited in this region more than 12,000 years ago mostly do not host groundwater with high levels of arsenic. Pleistocene aquifers are increasingly used as a safe source of drinking water4 and it is therefore important to understand under what conditions low levels of arsenic can be maintained. Here we reconstruct the initial phase of contamination of a Pleistocene aquifer near Hanoi, Vietnam. We demonstrate that changes in groundwater flow conditions and the redox state of the aquifer sands induced by groundwater pumping caused the lateral intrusion of arsenic contamination more than 120 metres from a Holocene aquifer into a previously uncontaminated Pleistocene aquifer. We also find that arsenic adsorbs onto the aquifer sands and that there is a 16–20-fold retardation in the extent of the contamination relative to the reconstructed lateral movement of groundwater over the same period. Our findings suggest that arsenic contamination of Pleistocene aquifers in south and southeast Asia as a consequence of increasing levels of groundwater pumping may have been delayed by the retardation of arsenic transport.National Science Foundation (U.S.) (NSF grant EAR09-11557)Swiss Agency for Development and Cooperation (Grant NAFOSTED 105-09-59-09 to CETASD, the Centre for Environmental Technology and Sustainable Development (Vietnam))National Institute of Environmental Health Sciences (NIEHS grant P42 ES010349)National Institute of Environmental Health Sciences (NIEHS grant P42 ES016454
    • …
    corecore