10 research outputs found

    Cytosolic NADPH balancing in Penicillium chrysogenum cultivated on mixtures of glucose and ethanol

    Get PDF
    The in vivo flux through the oxidative branch of the pentose phosphate pathway (oxPPP) in Penicillium chrysogenum was determined during growth in glucose/ethanol carbon-limited chemostat cultures, at the same growth rate. Non-stationary 13C flux analysis was used to measure the oxPPP flux. A nearly constant oxPPP flux was found for all glucose/ethanol ratios studied. This indicates that the cytosolic NADPH supply is independent of the amount of assimilated ethanol. The cofactor assignment in the model of van Gulik et al. (Biotechnol Bioeng 68(6):602–618, 2000) was supported using the published genome annotation of P. chrysogenum. Metabolic flux analysis showed that NADPH requirements in the cytosol remain nearly the same in these experiments due to constant biomass growth. Based on the cytosolic NADPH balance, it is known that the cytosolic aldehyde dehydrogenase in P. chrysogenum is NAD +  dependent. Metabolic modeling shows that changing the NAD + -aldehyde dehydrogenase to NADP + -aldehyde dehydrogenase can increase the penicillin yield on substrate

    A method for estimation of elasticities in metabolic networks using steady state and dynamic metabolomics data and linlog kinetics

    Get PDF
    BACKGROUND: Dynamic modeling of metabolic reaction networks under in vivo conditions is a crucial step in order to obtain a better understanding of the (dis)functioning of living cells. So far dynamic metabolic models generally have been based on mechanistic rate equations which often contain so many parameters that their identifiability from experimental data forms a serious problem. Recently, approximative rate equations, based on the linear logarithmic (linlog) format have been proposed as a suitable alternative with fewer parameters. RESULTS: In this paper we present a method for estimation of the kinetic model parameters, which are equal to the elasticities defined in Metabolic Control Analysis, from metabolite data obtained from dynamic as well as steady state perturbations, using the linlog kinetic format. Additionally, we address the question of parameter identifiability from dynamic perturbation data in the presence of noise. The method is illustrated using metabolite data generated with a dynamic model of the glycolytic pathway of Saccharomyces cerevisiae based on mechanistic rate equations. Elasticities are estimated from the generated data, which define the complete linlog kinetic model of the glycolysis. The effect of data noise on the accuracy of the estimated elasticities is presented. Finally, identifiable subset of parameters is determined using information on the standard deviations of the estimated elasticities through Monte Carlo (MC) simulations. CONCLUSION: The parameter estimation within the linlog kinetic framework as presented here allows the determination of the elasticities directly from experimental data from typical dynamic and/or steady state experiments. These elasticities allow the reconstruction of the full kinetic model of Saccharomyces cerevisiae, and the determination of the control coefficients. MC simulations revealed that certain elasticities are potentially unidentifiable from dynamic data only. Addition of steady state perturbation of enzyme activities solved this problem

    (13)C-Labeled Gluconate Tracing as a Direct and Accurate Method for Determining the Pentose Phosphate Pathway Split Ratio in Penicillium chrysogenum

    No full text
    In this study we developed a new method for accurately determining the pentose phosphate pathway (PPP) split ratio, an important metabolic parameter in the primary metabolism of a cell. This method is based on simultaneous feeding of unlabeled glucose and trace amounts of [U-(13)C]gluconate, followed by measurement of the mass isotopomers of the intracellular metabolites surrounding the 6-phosphogluconate node. The gluconate tracer method was used with a penicillin G-producing chemostat culture of the filamentous fungus Penicillium chrysogenum. For comparison, a (13)C-labeling-based metabolic flux analysis (MFA) was performed for glycolysis and the PPP of P. chrysogenum. For the first time mass isotopomer measurements of (13)C-labeled primary metabolites are reported for P. chrysogenum and used for a (13)C-based MFA. Estimation of the PPP split ratio of P. chrysogenum at a growth rate of 0.02 h(−1) yielded comparable values for the gluconate tracer method and the (13)C-based MFA method, 51.8% and 51.1%, respectively. A sensitivity analysis of the estimated PPP split ratios showed that the 95% confidence interval was almost threefold smaller for the gluconate tracer method than for the (13)C-based MFA method (40.0 to 63.5% and 46.0 to 56.5%, respectively). From these results we concluded that the gluconate tracer method permits accurate determination of the PPP split ratio but provides no information about the remaining cellular metabolism, while the (13)C-based MFA method permits estimation of multiple fluxes but provides a less accurate estimate of the PPP split ratio

    Short-Term Metabolome Dynamics and Carbon, Electron, and ATP Balances in Chemostat-Grown Saccharomyces cerevisiae CEN.PK 113-7D following a Glucose Pulse

    No full text
    The in vivo kinetics in Saccharomyces cerevisiae CEN.PK 113-7D was evaluated during a 300-second transient period after applying a glucose pulse to an aerobic, carbon-limited chemostat culture. We quantified the responses of extracellular metabolites, intracellular intermediates in primary metabolism, intracellular free amino acids, and in vivo rates of O(2) uptake and CO(2) evolution. With these measurements, dynamic carbon, electron, and ATP balances were set up to identify major carbon, electron, and energy sinks during the postpulse period. There were three distinct metabolic phases during this time. In phase I (0 to 50 seconds after the pulse), the carbon/electron balances closed up to 85%. The accumulation of glycolytic and storage compounds accounted for 60% of the consumed glucose, caused an energy depletion, and may have led to a temporary decrease in the anabolic flux. In phase II (50 to 150 seconds), the fermentative metabolism gradually became the most important carbon/electron sink. In phase III (150 to 300 seconds), 29% of the carbon uptake was not identified in the measurements, and the ATP balance had a large surplus. These results indicate an increase in the anabolic flux, which is consistent with macroscopic balances of extracellular fluxes and the observed increase in CO(2) evolution associated with nonfermentative metabolism. The identified metabolic processes involving major carbon, electron, and energy sinks must be taken into account in in vivo kinetic models based on short-term dynamic metabolome responses

    Malic Acid Production by Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, Oxaloacetate Reduction, and Malate Export▿ †

    Get PDF
    Malic acid is a potential biomass-derivable “building block” for chemical synthesis. Since wild-type Saccharomyces cerevisiae strains produce only low levels of malate, metabolic engineering is required to achieve efficient malate production with this yeast. A promising pathway for malate production from glucose proceeds via carboxylation of pyruvate, followed by reduction of oxaloacetate to malate. This redox- and ATP-neutral, CO2-fixing pathway has a theoretical maximum yield of 2 mol malate (mol glucose)−1. A previously engineered glucose-tolerant, C2-independent pyruvate decarboxylase-negative S. cerevisiae strain was used as the platform to evaluate the impact of individual and combined introduction of three genetic modifications: (i) overexpression of the native pyruvate carboxylase encoded by PYC2, (ii) high-level expression of an allele of the MDH3 gene, of which the encoded malate dehydrogenase was retargeted to the cytosol by deletion of the C-terminal peroxisomal targeting sequence, and (iii) functional expression of the Schizosaccharomyces pombe malate transporter gene SpMAE1. While single or double modifications improved malate production, the highest malate yields and titers were obtained with the simultaneous introduction of all three modifications. In glucose-grown batch cultures, the resulting engineered strain produced malate at titers of up to 59 g liter−1 at a malate yield of 0.42 mol (mol glucose)−1. Metabolic flux analysis showed that metabolite labeling patterns observed upon nuclear magnetic resonance analyses of cultures grown on 13C-labeled glucose were consistent with the envisaged nonoxidative, fermentative pathway for malate production. The engineered strains still produced substantial amounts of pyruvate, indicating that the pathway efficiency can be further improved

    Towards closed carbon loop fermentations: Cofeeding of Yarrowia lipolytica with glucose and formic acid

    No full text
    A novel fermentation process was developed in which renewable electricity is indirectly used as an energy source in fermentation, synergistically decreasing both the consumption of sugar as a first generation carbon source and emission of the greenhouse gas CO2. As an illustration, a glucose-based process is co-fed with formic acid, which can be generated by capturing CO2 from fermentation offgas followed by electrochemical reduction with renewable electricity. This “closed carbon loop” concept is demonstrated by a case study in which cofeeding formic acid is shown to significantly increase the yield of biomass on glucose of the industrially relevant yeast species Yarrowia lipolytica. First, the optimal feed ratio of formic acid to glucose is established using chemostat cultivations. Subsequently, guided by a dynamic fermentation process model, a fed-batch protocol is developed and demonstrated on laboratory scale. Finally, the developed fed-batch process is tested and proven to be scalable at pilot scale. Extensions of the concept are discussed to apply the concept to anaerobic fermentations, and to recycle the O2 that is co-generated with the formic acid to aerobic fermentation processes for intensification purposes.BT/Industrial MicrobiologyBT/Bioprocess Engineerin

    Computational fluid dynamics simulation of an industrial P. chrysogenum fermentation with a coupled 9-pool metabolic model: Towards rational scale-down and design optimization

    No full text
    We assess the effect of substrate heterogeneity on the metabolic response of P. chrysogenum in industrial bioreactors via the coupling of a 9-pool metabolic model with Euler-Lagrange CFD simulations. In this work, we outline how this coupled hydrodynamic-metabolic modeling can be utilized in 5 steps. (1) A model response study with a fixed spatial extra-cellular glucose concentration gradient, which reveals a drop in penicillin production rate qp of 18–50% for the simulated reactor, depending on model setup. (2) CFD-based scale-down design, where we design a 1-vessel scale down simulator based on the organism lifelines. (3) Scale-down verification, numerically comparing the model response in the proposed scale-down simulator with large-scale CFD response. (4) Reactor design optimization, reducing the drop in penicillin production by a change of feed location. (5) Long-term fed-batch simulation, where we verify model predictions against experimental data, and discuss population heterogeneity. Overall, these steps present a coupled hydrodynamic-metabolic approach towards bioreactor evaluation, scale-down and optimization.ChemE/Transport PhenomenaOLD BT/Cell Systems EngineeringBT/Bioprocess Engineerin
    corecore