84 research outputs found

    Bodem en voedsel: wat dragen bodemkundigen bij?

    Get PDF
    Bodemkunde als wetenschap bestaat ongeveer 150 jaar. In dit artikel wordt geprobeerd de vraag te beantwoorden welke bijdragen bodemkundigen hebben geleverd aan de voedselvoorziening wereldwijd. Die vraag blijkt niet gemakkelijk te beantwoorden. Identificatie en waardering van landbouwgronden is een goede eerste; het identificeren en verbeteren van zure gronden is een vijfde thema. Een rondgang langs wetenschap en wetenschapper

    European-wide spatial analysis of sewage treatment plants and the possible benefits to nature of advanced treatment to reduce pharmaceutical emissions

    Get PDF
    Pharmaceuticals are known to widely occur in the environment and to affect the health of ecosystems. Sewage treatment plants (STPs) are main emission pathways for pharmaceuticals, which are often not sufficiently removed during wastewater treatment. In Europe, STP treatment requirements are specified under the Urban WasteWater Treatment Directive (UWWTD). The introduction of advanced treatment techniques, such as ozonation and activated carbon, under the UWWTD is expected to be an important option to reduce pharmaceutical emissions. In this study, we present a European-wide analysis of STPs reported under the UWWTD, their current treatment level and potential to remove a set of 58 prioritised pharmaceuticals. Three different scenarios were analysed to show 1) UWWTD present effectiveness, 2) the effectiveness at full UWWTD compliance, and 3) the effectiveness when advanced treatment is implemented at STPs with a treatment capacity of &gt;100.000 person equivalents. Based on a literature study, the potential of individual STPs to reduce pharmaceutical emissions ranged from an average of 9% for STPs with primary treatment to 84% for STPs applying advanced treatment. Results of our calculations show that European-wide emission of pharmaceuticals can be reduced with 68% when large STPs are updated with advanced treatment, but spatial differences exist. We argue that adequate attention should also be paid with regards to preventing environmental impacts of STPs with a capacity &lt;100.000 p.e. Circa 44% of total STP effluent is emitted near Natura2000 sites (EU nature protection areas). Of all surface waters receiving STP effluent for which the ecological status has been assessed under the Water Framework Directive, 77% have a status of less than good. Relatively often only primary treatment is applied to wastewater emitted into coastal waters. This analysis can be used to further model pharmaceutical concentrations in European surface waters, to identify STPs for which more advanced treatment might be required and to protect EU aquatic biodiversity.</p

    Safe and sustainable by design:A computer-based approach to redesign chemicals for reduced environmental hazards

    Get PDF
    Persistency of chemicals in the environment is seen a pressing issue as it results in accumulation of chemicals over time. Persistent chemicals can be an asset in a well-functioning circular economy where products are more durable and can be reused or recycled. This objective can however not always be fulfilled as release of chemicals from products into the environment can be inherently coupled to their use. In these situations, chemicals should be designed for degradation. In this study, a systematic and computer-aided workflow was developed to facilitate the chemical redesign for reduced persistency. The approach includes elements of Essential Use, Alternatives Assessment and Green and Circular Chemistry and ties into goals recently formulated in the context of the EU Green Deal. The organophosphate chemical triisobutylphosphate (TiBP) was used as a case study for exploration of the approach, as its emission to the environment was expected to be inevitable when used as a flame retardant. Over 6.3 million alternative structures were created in silico and filtered based on QSAR outputs to remove potentially non-readily biodegradable structures. With a multi-criteria analysis based on predicted properties and synthesizability a top 500 of most desirable structures was identified. The target structure (di-n-butyl (2-hydroxyethyl) phosphate) was manually selected and synthesized. The approach can be expanded and further verified to reach its full potential in the mitigation of chemical pollution and to help enable a safe circular economy
    • …
    corecore