134 research outputs found

    Assessment of collateral status by dynamic ct angiography in acute mca stroke: Timing of acquisition and relationship with final infarct volume

    Get PDF
    BACKGROUND AND PURPOSE: Dynamic CTA is a promising technique for visualization of collateral filling in patients with acute ischemic stroke. Our aim was to describe collateral filling with dynamic CTA and assess the relationship with infarct volume at follow-up. MATERIALS AND METHODS: We selected patients with acute ischemic stroke due to proximal MCA occlusion. Patients underwent NCCT, single-phase CTA, and whole-brain CT perfusion/dynamic CTA within 9 hours after stroke onset. For each patient, a detailed assessment of the extent and velocity of arterial filling was obtained. Poor radiologic outcome was defined as an infarct volume of\70 mL. The association between collateral score and follow-up infarct volume was analyzed with Poisson regression. RESULTS: Sixty-one patients with a mean age of 67 years were included. For all patients combined, the interval that contained the peak of arterial filling in both hemispheres was between 11 and 21 seconds after ICA contrast entry. Poor collateral status as assessed with dynamic CTA was more strongly associated with infarct volume of 70 mL (risk ratio, 1.9; 95% CI, 1.3-2.9) than with single-phase CTA (risk ratio, 1.4; 95% CI, 0.8-2.5). Four subgroups (good-versus-poor and fast-versus-sl

    Microstructural white matter integrity in relation to vascular reactivity in Dutch-type hereditary cerebral amyloid angiopathy

    Get PDF
    Cerebral Amyloid Angiopathy (CAA) is characterized by cerebrovascular amyloid-β accumulation leading to hallmark cortical MRI markers, such as vascular reactivity, but white matter is also affected. By studying the relationship in different disease stages of Dutch-type CAA (D-CAA), we tested the relation between vascular reactivity and microstructural white matter integrity loss. In a cross-sectional study in D-CAA, 3 T MRI was performed with Blood-Oxygen-Level-Dependent (BOLD) fMRI upon visual activation to assess vascular reactivity and diffusion tensor imaging to assess microstructural white matter integrity through Peak Width of Skeletonized Mean Diffusivity (PSMD). We assessed the relationship between BOLD parameters - amplitude, time-to-peak (TTP), and time-to-baseline (TTB) - and PSMD, with linear and quadratic regression modeling. In total, 25 participants were included (15/10 pre-symptomatic/symptomatic; mean age 36/59 y). A lowered BOLD amplitude (unstandardized β = 0.64, 95%CI [0.10, 1.18], p = 0.02, Adjusted R2 = 0.48), was quadratically associated with increased PSMD levels. A delayed BOLD response, with prolonged TTP (β = 8.34 × 10-6, 95%CI [1.84 × 10-6, 1.48 × 10-5], p = 0.02, Adj. R2 = 0.25) and TTB (β = 6.57 × 10-6, 95%CI [1.92 × 10-6, 1.12 × 10-5], p = 0.008, Adj. R2 = 0.29), was linearly associated with increased PSMD. In D-CAA subjects, predominantly in the symptomatic stage, impaired cerebrovascular reactivity is related to microstructural white matter integrity loss. Future longitudinal studies are needed to investigate whether this relation is causal.</p

    Impact of Intracranial Volume and Brain Volume on the Prognostic Value of Computed Tomography Perfusion Core Volume in Acute Ischemic Stroke

    Get PDF
    Background: Computed tomography perfusion (CTP)-estimated core volume is associated with functional outcomes in acute ischemic stroke. This relationship might differ among patients, depending on brain volume. Materials and Methods: We retrospectively included patients from the MR CLEAN Registry. Cerebrospinal fluid (CSF) and intracranial volume (ICV) were automatically segmented on NCCT. We defined the proportion of the ICV and total brain volume (TBV) affected by the ischemic core as ICVcore and TBVcore. Associations between the core volume, ICVcore, TBVcore, and functional outcome are reported per interquartile range (IQR). We calculated the area under the curve (AUC) to assess diagnostic accuracy.Results: In 200 patients, the median core volume was 13 (5–41) mL. Median ICV and TBV were 1377 (1283–1456) mL and 1108 (1020–1197) mL. Median ICVcore and TBVcore were 0.9 (0.4–2.8)% and 1.7 (0.5–3.6)%. Core volume (acOR per IQR 0.48 [95%CI 0.33–0.69]), ICVcore (acOR per IQR 0.50 [95%CI 0.35–0.69]), and TBVcore (acOR per IQR 0.41 95%CI 0.33–0.67]) showed a lower likelihood of achieving improved functional outcomes after 90 days. The AUC was 0.80 for the prediction of functional independence at 90 days for the CTP-estimated core volume, the ICVcore, and the TBVcore. Conclusion:Correcting the CTP-estimated core volume for the intracranial or total brain volume did not improve the association with functional outcomes in patients who underwent EVT.</p

    Brain Deep Medullary Veins on 7T MRI in Dutch-Type Hereditary Cerebral Amyloid Angiopathy

    Get PDF
    BACKGROUND: Deep medullary vein (DMV) changes occur in cerebral small vessel diseases (SVD) and in Alzheimer's disease. Cerebral amyloid angiopathy (CAA) is a common SVD that has a high co-morbidity with Alzheimer's disease. So far, DMVs have not been evaluated in CAA. OBJECTIVE: To evaluate DMVs in Dutch-type hereditary CAA (D-CAA) mutation carriers and controls, in relation to MRI markers associated with D-CAA. METHODS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density were quantified on 7 Tesla 3D susceptibility weighted MRI in pre-symptomatic D-CAA mutation carriers (n = 8), symptomatic D-CAA mutation carriers (n = 8), and controls (n = 25). Hemorrhagic MRI markers (cerebral microbleeds, intracerebral hemorrhages, cortical superficial siderosis, convexity subarachnoid hemorrhage), non-hemorrhagic MRI markers (white matter hyperintensities, enlarged perivascular spaces, lacunar infarcts, cortical microinfarcts), cortical grey matter perfusion, and diffusion tensor imaging parameters were assessed in D-CAA mutation carriers. Univariate general linear analysis was used to determine associations between DMV parameters and MRI markers. RESULTS: Quantitative DMV parameters length, tortuosity, inhomogeneity, and density did not differ between pre-symptomatic D-CAA mutation carriers, symptomatic D-CAA mutation carriers, and controls. No associations were found between DMV parameters and MRI markers associated with D-CAA. CONCLUSION: This study indicates that vascular amyloid-β deposition does not affect DMV parameters. In patients with CAA, DMVs do not seem to play a role in the pathogenesis of MRI markers associated with CAA

    MR CLEAN-LATE, a multicenter randomized clinical trial of endovascular treatment of acute ischemic stroke in The Netherlands for late arrivals:study protocol for a randomized controlled trial

    Get PDF
    BACKGROUND: Endovascular therapy (EVT) for acute ischemic stroke due to proximal occlusion of the anterior intracranial circulation, started within 6 h from symptom onset, has been proven safe and effective. Recently, EVT has been proven effective beyond the 6-h time window in a highly selected population using CT perfusion or MR diffusion. Unfortunately, these imaging modalities are not available in every hospital, and strict selection criteria might exclude patients who could still benefit from EVT. The presence of collaterals on CT angiography (CTA) may offer a more pragmatic imaging criterion that predicts possible benefit from EVT beyond 6 h from time last known well. The aim of this study is to assess the safety and efficacy of EVT for patients treated between 6 and 24 h from time last known well after selection based on the presence of collateral flow. METHODS: The MR CLEAN-LATE trial is a multicenter, randomized, open-label, blinded endpoint trial, aiming to enroll 500 patients. We will investigate the efficacy of EVT between 6 and 24 h from time last known well in acute ischemic stroke due to a proximal intracranial anterior circulation occlusion confirmed by CTA or MRA. Patients with any collateral flow (poor, moderate, or good collaterals) on CTA will be included. The inclusion of poor collateral status will be restricted to a maximum of 100 patients. In line with the current Dutch guidelines, patients who fulfill the characteristics of included patients in DAWN and DEFUSE 3 will be excluded as they are eligible for EVT as standard care. The primary endpoint is functional outcome at 90 days, assessed with the modified Rankin Scale (mRS) score. Treatment effect will be estimated with ordinal logistic regression (shift analysis) on the mRS at 90 days. Secondary endpoints include clinical stroke severity at 24 h and 5-7 days assessed by the NIHSS, symptomatic intracranial hemorrhage, recanalization at 24 h, follow-up infarct size, and mortality at 90 days, DISCUSSION: This study will provide insight into whether EVT is safe and effective for patients treated between 6 and 24 h from time last known well after selection based on the presence of collateral flow on CTA. TRIAL REGISTRATION: NL58246.078.17 , ISRCTN19922220 , Registered on 11 December 2017

    Cost-effectiveness of CT perfusion for the detection of large vessel occlusion acute ischemic stroke followed by endovascular treatment:a model-based health economic evaluation study

    Get PDF
    Objectives:CT perfusion (CTP) has been suggested to increase the rate of large vessel occlusion (LVO) detection in patients suspected of acute ischemic stroke (AIS) if used in addition to a standard diagnostic imaging regime of CT angiography (CTA) and non-contrast CT (NCCT). The aim of this study was to estimate the costs and health effects of additional CTP for endovascular treatment (EVT)–eligible occlusion detection using model-based analyses. Methods: In this Dutch, nationwide retrospective cohort study with model-based health economic evaluation, data from 701 EVT-treated patients with available CTP results were included (January 2018–March 2022; trialregister.nl:NL7974). We compared a cohort undergoing NCCT, CTA, and CTP (NCCT + CTA + CTP) with a generated counterfactual where NCCT and CTA (NCCT + CTA) was used for LVO detection. The NCCT + CTA strategy was simulated using diagnostic accuracy values and EVT effects from the literature. A Markov model was used to simulate 10-year follow-up. We adopted a healthcare payer perspective for costs in euros and health gains in quality-adjusted life years (QALYs). The primary outcome was the net monetary benefit (NMB) at a willingness to pay of €80,000; secondary outcomes were the difference between LVO detection strategies in QALYs (ΔQALY) and costs (ΔCosts) per LVO patient. Results: We included 701 patients (median age: 72, IQR: [62–81]) years). Per LVO patient, CTP-based occlusion detection resulted in cost savings (ΔCosts median: € − 2671, IQR: [€ − 4721; € − 731]), a health gain (ΔQALY median: 0.073, IQR: [0.044; 0.104]), and a positive NMB (median: €8436, IQR: [5565; 11,876]) per LVO patient. Conclusion: CTP-based screening of suspected stroke patients for an endovascular treatment eligible large vessel occlusion was cost-effective. Clinical relevance statement.: Although CTP-based patient selection for endovascular treatment has been recently suggested to result in worse patient outcomes after ischemic stroke, an alternative CTP-based screening for endovascular treatable occlusions is cost-effective. Key Points: • Using CT perfusion to detect an endovascular treatment-eligible occlusions resulted in a health gain and cost savings during 10 years of follow-up. • Depending on the screening costs related to the number of patients needed to image with CT perfusion, cost savings could be considerable (median: € − 3857, IQR: [€ − 5907; € − 1916] per patient). • As the gain in quality adjusted life years was most affected by the sensitivity of CT perfusion-based occlusion detection, additional studies for the diagnostic accuracy of CT perfusion for occlusion detection are required.</p

    Microstructural white matter integrity in relation to vascular reactivity in Dutch-type hereditary cerebral amyloid angiopathy

    Get PDF
    Cerebral Amyloid Angiopathy (CAA) is characterized by cerebrovascular amyloid-β accumulation leading to hallmark cortical MRI markers, such as vascular reactivity, but white matter is also affected. By studying the relationship in different disease stages of Dutch-type CAA (D-CAA), we tested the relation between vascular reactivity and microstructural white matter integrity loss. In a cross-sectional study in D-CAA, 3 T MRI was performed with Blood-Oxygen-Level-Dependent (BOLD) fMRI upon visual activation to assess vascular reactivity and diffusion tensor imaging to assess microstructural white matter integrity through Peak Width of Skeletonized Mean Diffusivity (PSMD). We assessed the relationship between BOLD parameters – amplitude, time-to-peak (TTP), and time-to-baseline (TTB) – and PSMD, with linear and quadratic regression modeling. In total, 25 participants were included (15/10 pre-symptomatic/symptomatic; mean age 36/59 y). A lowered BOLD amplitude (unstandardized β = 0.64, 95%CI [0.10, 1.18], p = 0.02, Adjusted R2 = 0.48), was quadratically associated with increased PSMD levels. A delayed BOLD response, with prolonged TTP (β = 8.34 × 10−6, 95%CI [1.84 × 10−6, 1.48 × 10−5], p = 0.02, Adj. R2 = 0.25) and TTB (β = 6.57 × 10−6, 95%CI [1.92 × 10−6, 1.12 × 10−5], p = 0.008, Adj. R2 = 0.29), was linearly associated with increased PSMD. In D-CAA subjects, predominantly in the symptomatic stage, impaired cerebrovascular reactivity is related to microstructural white matter integrity loss. Future longitudinal studies are needed to investigate whether this relation is causal

    CT angiography and CT perfusion improve prediction of infarct volume in patients with anterior circulation stroke

    Get PDF
    Introduction: We investigated whether baseline CT angiography (CTA) and CT perfusion (CTP) in acute ischemic stroke could improve prediction of infarct presence and infarct volume on follow-up imaging. Methods: We analyzed 906 patients with suspected anterior circulation stroke from the prospective multicenter Dutch acute stroke study (DUST). All patients underwent baseline non-contrast CT, CTA, and CTP and follow-up non-contrast CT/MRI after 3 days. Multivariable regression models were developed including patient characteristics and non-contrast CT, and subsequently, CTA and CTP measures were added. The increase in area under the curve (AUC) and R2 was assessed to determine the additional value of CTA and CTP. Results: At follow-up, 612 patients (67.5 %) had a detectable infarct on CT/MRI; median infarct volume was 14.8 mL (interquartile range (IQR) 2.8–69.6). Regarding infarct presence, the AUC of 0.82 (95 % confidence interval (CI) 0.79–0.85) for patient characteristics and non-contrast CT was improved with addition of CTA measures (AUC 0.85 (95 % CI 0.82–0.87); p < 0.001) and was even higher after addition of CTP measures (AUC 0.89 (95 % CI 0.87–0.91); p < 0.001) and combined CTA/CTP measures (AUC 0.89 (95 % CI 0.87–0.91); p < 0.001). For infarct volume, adding combined CTA/CTP measures (R2 = 0.58) was superior to patient characteristics and non-contrast CT alone (R2 = 0.44) and to addition of CTA alone (R2 = 0.55) or CTP alone (R2 = 0.54; all p < 0.001). Conclusion: In the acute stage, CTA and CTP have additional value over patient characteristics and non-contrast CT for predicting infarct presence and infarct volume on follow-up imaging. These findings could be applied for patient selection in future trials on ischemic stroke treatment

    Observer variability of absolute and relative thrombus density measurements in patients with acute ischemic stroke

    Get PDF
    Introduction: Thrombus density may be a predictor for acute ischemic stroke treatment success. However, only limited data on observer variability for thrombus density measurements exist. This study assesses the variability and bias of four common thrombus density measurement methods by expert and non-expert observers. Methods: For 132 consecutive patients with acute ischemic stroke, three experts and two trained observers determined thrombus density by placing three standardized regions of interest (ROIs) in the thrombus and corresponding contralateral arterial segment. Subsequently, absolute and relative thrombus densities were determined using either one or three ROIs. Intraclass correlation coefficient (ICC) was determined, and Bland–Altman analysis was performed to evaluate interobserver and intermethod agreement. Accuracy of the trained observer was evaluated with a reference expert observer using the same statistical analysis. Results: The highest interobserver agreement was obtained for absolute thrombus measurements using three ROIs (ICCs ranging from 0.54 to 0.91). In general, interobserver agreement was lower for relative measurements, and for using one instead of three ROIs. Interobserver agreement of trained non-experts and experts was similar. Accuracy of the trained observer measurements was comparable to the expert interobserver agreement and was better for absolute measurements and with three ROIs. The agreement between the one ROI and three ROI methods was good. Conclusion: Absolute thrombus density measurement has superior interobserver agreement compared to relative density measurement. Interobserver variation is smaller when multiple ROIs are used. Trained non-expert observers can accurately and reproducibly assess absolute thrombus densities using three ROIs
    • …
    corecore