17 research outputs found

    Cellular distribution of vascular endothelial growth factor A (VEGFA) and B (VEGFB) and VEGF receptors 1 and 2 in focal cortical dysplasia type IIB

    Get PDF
    Members of the vascular endothelial growth factor (VEGF) family are key signaling proteins in the induction and regulation of angiogenesis, both during development and in pathological conditions. However, signaling mediated through VEGF family proteins and their receptors has recently been shown to have direct effects on neurons and glial cells. In the present study, we immunocytochemically investigated the expression and cellular distribution of VEGFA, VEGFB, and their associated receptors (VEGFR-1 and VEGFR-2) in focal cortical dysplasia (FCD) type IIB from patients with medically intractable epilepsy. Histologically normal temporal cortex and perilesional regions displayed neuronal immunoreactivity (IR) for VEGFA, VEGFB, and VEGF receptors (VEGFR-1 and VEGFR-2), mainly in pyramidal neurons. Weak IR was observed in blood vessels and there was no notable glial IR within the grey and white matter. In all FCD specimens, VEGFA, VEGFB, and both VEGF receptors were highly expressed in dysplastic neurons. IR in astroglial and balloon cells was observed for VEGFA and its receptors. VEGFR-1 displayed strong endothelial staining in FCD. Double-labeling also showed expression of VEGFA, VEGFB and VEGFR-1 in cells of the microglia/macrophage lineage. The neuronal expression of both VEGFA and VEGFB, together with their specific receptors in FCD, suggests autocrine/paracrine effects on dysplastic neurons. These autocrine/paracrine effects could play a role in the development of FCD, preventing the death of abnormal neuronal cells. In addition, the expression of VEGFA and its receptors in glial cells within the dysplastic cortex indicates that VEGF-mediated signaling could contribute to astroglial activation and associated inflammatory reactions

    Overexpression of the human major vault protein in gangliogliomas.

    No full text
    PURPOSE: Recent evidence has been obtained that the major vault protein (MVP) may play a role in multidrug resistance (MDR). We investigated the expression and cellular localization of MVP in gangliogliomas (GGs), which are increasingly recognized causes of chronic pharmacoresistant epilepsy. METHODS: Surgical tumor specimens (n = 30), as well as peritumoral and control brain tissues, were examined for the cellular distribution pattern of MVP with immunocytochemistry. Western blot analysis showed a consistent increase in MVP expression in GGs compared with that in control cortex. RESULTS: In normal brain, MVP expression was below detection in glial and neuronal cells, and only low immunoreactivity (IR) levels were detected in blood vessels. MVP expression was observed in the neuronal component of 30 of 30 GGs and in a population of tumor glial cells. In the majority of the tumors, strong MVP IR was found in lesional vessels. Perilesional regions did not show increased staining in vessels or in neuronal and glial cells compared with normal cortex. However, expression of MVP was detected in the hippocampus in cases with dual pathology. CONCLUSIONS: The increased expression of MVP in GGs is another example of an MDR-related protein that is upregulated in patients with refractory epilepsy. Further research is necessary to investigate whether it could play role in the mechanisms underlying drug resistance in chronic human epilepsy
    corecore